Bayesian analysis of Gumbel distributed data

被引:7
|
作者
Chechile, RA [1 ]
机构
[1] Tufts Univ, Dept Psychol, Medford, MA 02155 USA
关键词
extreme-order distributions; Gumbel conjugate funtion; small-sample Gumbel analysis; exact posterior parameter sampling;
D O I
10.1081/STA-100002093
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
The form and conditions are delineated for a Bayesian conjugate prior probability density function for Gumbel distributed data. The solution is provided for the posterior normalization constant along with the marginal distribution for the Gumbel scale-factor parameter, delta. Moreover, an exact Monte Carlo algorithm is provided to evaluate the properties of the posterior distribution for the location and scale factor parameters along with their correlation. The method for analyzing Gumbel distributed data is illustrated with several applications.
引用
收藏
页码:485 / 496
页数:12
相关论文
共 50 条
  • [41] Bayesian analysis of metapopulation data
    O'Hara, RB
    Arjas, E
    Toivonen, H
    Hanski, I
    [J]. ECOLOGY, 2002, 83 (09) : 2408 - 2415
  • [42] Bayesian data analysis for newcomers
    Kruschke, John K.
    Liddell, Torrin M.
    [J]. PSYCHONOMIC BULLETIN & REVIEW, 2018, 25 (01) : 155 - 177
  • [43] Collective Mining of Bayesian Networks from Distributed Heterogeneous Data
    R. Chen
    K. Sivakumar
    H. Kargupta
    [J]. Knowledge and Information Systems, 2004, 6 : 164 - 187
  • [44] Learning Bayesian Network structure from distributed homogeneous data
    Gou, Kui Xiang
    Jun, Gong Xiu
    Zhao, Zheng
    [J]. SNPD 2007: EIGHTH ACIS INTERNATIONAL CONFERENCE ON SOFTWARE ENGINEERING, ARTIFICIAL INTELLIGENCE, NETWORKING, AND PARALLEL/DISTRIBUTED COMPUTING, VOL 3, PROCEEDINGS, 2007, : 250 - +
  • [45] Bayesian Data Fusion for Distributed Target Detection in Sensor Networks
    Guerriero, Marco
    Svensson, Lennart
    Willett, Peter
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (06) : 3417 - 3421
  • [46] Collective mining of Bayesian networks from distributed heterogeneous data
    R. Chen
    K. Sivakumar
    H. Kargupta
    [J]. Knowledge and Information Systems, 2004, 6 (2) : 164 - 187
  • [47] Collective mining of Bayesian networks from distributed heterogeneous data
    Chen, R
    Sivakumar, K
    Kargupta, H
    [J]. KNOWLEDGE AND INFORMATION SYSTEMS, 2004, 6 (02) : 164 - 187
  • [48] Distributed Bayesian Matrix Decomposition for Big Data Mining and Clustering
    Zhang, Chihao
    Yang, Yang
    Zhou, Wei
    Zhang, Shihua
    [J]. IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2022, 34 (08) : 3701 - 3713
  • [49] A Bayesian Approach for Convex Combination of Two Gumbel-Barnett Copulas
    Fernandez, M.
    Gonzalez-Lopez, V. A.
    [J]. 11TH INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2013, PTS 1 AND 2 (ICNAAM 2013), 2013, 1558 : 1491 - 1494
  • [50] Inventory-Production Control Systems with Gumbel Distributed Deterioration
    Baten, Md Azizul
    Kamil, Anton Abdulbasah
    Lateh, Habibah
    [J]. AASRI CONFERENCE ON POWER AND ENERGY SYSTEMS, 2012, 2 : 93 - 105