Frechet AL-spaces have the Dunford-Pettis property

被引:1
|
作者
Díaz, JC
Fernández, A
Naranjo, F
机构
[1] Univ Cordoba, ETSIAM, Dpto Matemat, E-14004 Cordoba, Spain
[2] Escuela Super Ingn, Dpto Matemat Aplicada 2, Seville 41092, Spain
关键词
D O I
10.1017/S0004972700032354
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A Frechet lattice E is an AL-space if its topology can be defined by a family of lattice seminorms that are additive in the positive cone of E. Grothendieck proved that AL-Banach spaces have the Dunford-Pettis property. This result was recently extended by Fernandez and Naranjo to AL-Frechet spaces with a continuous norm and weak order unit. In this note we show how to remove both hypotheses.
引用
收藏
页码:383 / 386
页数:4
相关论文
共 50 条
  • [31] DUNFORD-PETTIS PROPERTY FOR CERTAIN UNIFORM ALGEBRAS
    DELBAEN, F
    PACIFIC JOURNAL OF MATHEMATICS, 1976, 65 (01) : 29 - 33
  • [32] Strong Dunford-Pettis sets and spaces of operators
    Ghenciu, I
    Lewis, PW
    MONATSHEFTE FUR MATHEMATIK, 2005, 144 (04): : 275 - 284
  • [34] DUNFORD-PETTIS PROPERTY OF THE PRODUCT OF SOME OPERATORS
    Aqzzouz, Belmesnaoui
    Aboutafail, Othman
    Elbour, Aziz
    METHODS OF FUNCTIONAL ANALYSIS AND TOPOLOGY, 2011, 17 (04): : 295 - 299
  • [35] THE DUNFORD-PETTIS PROPERTY IS NOT A 3-SPACE PROPERTY
    CASTILLO, JMF
    GONZALEZ, M
    ISRAEL JOURNAL OF MATHEMATICS, 1993, 81 (03) : 297 - 299
  • [36] Banach lattices with weak Dunford-Pettis property
    Bouras, Khalid
    Moussa, Mohammed
    World Academy of Science, Engineering and Technology, 2011, 50 : 880 - 884
  • [38] A property of Dunford-Pettis type in topological groups
    Martín-Peinador, E
    Tarieladze, V
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 132 (06) : 1827 - 1837
  • [39] Some progress on the polynomial Dunford-Pettis property
    Cilia, Raffaella
    Gutierrez, Joaquin M.
    RENDICONTI LINCEI-MATEMATICA E APPLICAZIONI, 2018, 29 (04) : 679 - 687
  • [40] ON DUNFORD-PETTIS OPERATORS
    SAAB, E
    CANADIAN MATHEMATICAL BULLETIN-BULLETIN CANADIEN DE MATHEMATIQUES, 1982, 25 (02): : 207 - 209