Accurate Effective Stress Measures: Predicting Creep Life for 3D Stresses Using 2D and 1D Creep Rupture Simulations and Data

被引:4
|
作者
Rovinelli, Andrea [1 ]
Messner, Mark C. [1 ]
Parks, David M. [2 ]
Sham, Ting-Leung [3 ]
机构
[1] Argonne Natl Lab, Appl Mat Div, Lemont, IL 60439 USA
[2] MIT, Cambridge, MA 02139 USA
[3] Idaho Natl Lab, Idaho Falls, ID USA
关键词
Creep; Crystal plasticity; Effective stress; Multiaxial creep; Triaixial stress; VOID GROWTH; POWER-LAW; STRENGTH; CAVITATION; FRACTURE; FAILURE; CRACK; FLOW;
D O I
10.1007/s40192-021-00228-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Operating structural components experience complex loading conditions resulting in 3D stress states. Current design practice estimates multiaxial creep rupture life by mapping a general state of stress to a uniaxial creep rupture correlation using effective stress measures. The data supporting the development of effective stress measures are nearly always only uniaxial and biaxial, as 3D creep rupture tests are not widely available. This limitation means current effective stress measures must extrapolate from 2D to 3D stress states, potentially introducing extrapolation error. In this work, we use a physics-based, crystal plasticity finite element model to simulate uniaxial, biaxial, and triaxial creep rupture. We use the virtual dataset to assess the accuracy of current and novel effective stress measures in extrapolating from 2D to 3D stresses and also explore how the predictive accuracy of the effective stress measures might change if experimental 3D rupture data was available. We confirm these conclusions, based on simulation data, against multiaxial creep rupture experimental data for several materials, drawn from the literature. The results of the virtual experiments show that calibrating effective stress measures using triaxial test data would significantly improve accuracy and that some effective stress measures are more accurate than others, particularly for highly triaxial stress states. Results obtained using experimental data confirm the numerical findings and suggest that a unified effective stress measure should include an explicit dependence on the first stress invariant, the maximum tensile principal stress, and the von Mises stress.
引用
收藏
页码:627 / 643
页数:17
相关论文
共 50 条
  • [21] Exploring Group 14 Structures: 1D to 2D to 3D
    Wen, Xiao-Dong
    Cahill, Thomas J.
    Hoffmann, Roald
    CHEMISTRY-A EUROPEAN JOURNAL, 2010, 16 (22) : 6555 - 6566
  • [22] Resistance Modelling in 1D, 2D, and 3D for substrate networks
    Kagganti, Shiva P.
    Kristiansson, Simon
    Ingvarson, Fredrik
    Jeppson, Kjell O.
    PHYSICA SCRIPTA, 2004, T114 : 217 - 222
  • [23] Modelling magnetic exchange springs in 1D, 2D, and 3D
    Bowden, G. J.
    Martin, K. N.
    Rainford, B. D.
    de Groot, P. A. J.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (01)
  • [24] Analysis of 1D, 2D and 3D periodical photonic crystals
    Davidovich, MV
    Gerasimov, AA
    APEDE 2004: INTERNATIONAL CONFERENCE ON ACTUAL PROBLEMS OF ELECTRON DEVICES ENGINEERING, CONFERENCE PROCEEDINGS, 2004, : 220 - 226
  • [25] 0D, 1D, 2D, and 3D simulations of an idealizedcoaxial impedance-matched Marx generator
    Rose, D. V.
    Stygar, W. A.
    Offermann, D. T.
    Lechien, K. R.
    Anderson, M. G.
    Raman, K. S.
    Schmidt, A. E.
    Max, D. A.
    Beatty, C. B.
    Anaya, M.
    Anquillano, A. S.
    Arsenlis, A.
    Benson, A. M.
    Beverly, R. E.
    Boehm, K. J.
    Chaffee, R. S.
    Cortes, J. E.
    Drews, W. A.
    Edwards, J. J.
    Ellsworth, J. L.
    Gaikwad, A. K.
    Genoni, T. C.
    Grim, G. P.
    Hadley, K. T.
    Hammer, J. H.
    Herrmann, M. C.
    Howland, F. A.
    Hutchinson, T. M.
    Javedani, J. B.
    Johnson, A. J.
    Kelsall, B. J.
    Link, A. J.
    Meezan, N. B.
    Mostrom, C. A.
    Mostrom, C. B.
    Norton, D. B.
    Paraschiv, I.
    Russell, A. M.
    Smith, E. B.
    Soni, N. C.
    Speer, R. D.
    Spielman, R. B.
    Thoma, C. H.
    Town, R. P.
    Trueblood, J. J.
    Tummel, K. K.
    Watson, E. D.
    Watson, J. A.
    Welch, D. R.
    White, A. D.
    PHYSICAL REVIEW ACCELERATORS AND BEAMS, 2024, 27 (12)
  • [26] 2D and 3D separation of stresses using automated photoelasticity
    Haake, SJ
    Patterson, EA
    Wang, ZF
    EXPERIMENTAL MECHANICS, 1996, 36 (03) : 269 - 276
  • [27] Fast and accurate calibration of 1D and 2D gratings
    Lei, Lihua
    Liu, Yi
    Chen, Xin
    Fu, Yunxia
    Li, Yuan
    EQUIPMENT MANUFACTURING TECHNOLOGY AND AUTOMATION, PTS 1-3, 2011, 317-319 : 2196 - +
  • [28] 3D printed NMR spectra: From 1D and 2D acquisition to 3D visualization
    Bakker, Michael
    Boyd, Ben
    Meints, Gary A.
    CONCEPTS IN MAGNETIC RESONANCE PART A, 2018, 47A (01)
  • [29] Breast Cancer Detection using 1D, 2D and 3D FDTD Numerical Methods
    Mirza, A. F.
    Abdulsalam, F.
    Asif, R.
    Dama, Y. A. S.
    Abusitta, M. M.
    Elmegri, F.
    Abd-Alhameed, R. A.
    Noras, J. M.
    Qahwaji, R.
    CIT/IUCC/DASC/PICOM 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY - UBIQUITOUS COMPUTING AND COMMUNICATIONS - DEPENDABLE, AUTONOMIC AND SECURE COMPUTING - PERVASIVE INTELLIGENCE AND COMPUTING, 2015, : 1043 - 1046
  • [30] Electrospinning nanofibers to 1D, 2D, and 3D scaffolds and their biomedical applications
    Zhong, Huiling
    Huang, Jun
    Wu, Jun
    Du, Jianhang
    NANO RESEARCH, 2022, 15 (02) : 787 - 804