Innovative Approach for Online Prediction of Blood Glucose Profile in Type 1 Diabetes Patients

被引:0
|
作者
Estrada, Giovanna Castillo [1 ]
Kirchsteiger, Harald [1 ]
del Re, Luigi [1 ]
Renard, Eric [2 ,3 ]
机构
[1] Johannes Kepler Univ Linz, Inst Design & Control Mechatron Syst, A-4040 Linz, Austria
[2] Univ Hosp, Dept Endocrinol, Cleveland, OH 44106 USA
[3] Univ Montpellier I, Dept Endocrinol, Montpellier, France
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive identification techniques are used to estimate predictions for the human glucose-insulin subsystem. By replacing a constant gain with a physiologically inspired adaptation rule and adding as additional inputs the two variables ingested meal and administered insulin-which have the highest impact on the glucose concentration-the overall performance of a 45 min glucose prediction could be increased compared to standard identification and prediction methods. The results were analyzed from a system theoretical, and also from a clinical point of view using the CG-EGA.
引用
收藏
页码:2015 / 2020
页数:6
相关论文
共 50 条
  • [1] Nonlinear gain in online prediction of blood glucose profile in type 1 diabetic patients
    Estrada, Giovanna Castillo
    del Re, Luigi
    Renard, Eric
    [J]. 49TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2010, : 1668 - 1673
  • [2] A Probabilistic Approach to Blood Glucose Prediction in Type 1 Diabetes Under Meal Uncertainties
    Langarica, Saul
    Rodriguez-Fernandez, Maria
    Doyle III, Francis J.
    Nunez, Felipe
    [J]. IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2023, 27 (10) : 5054 - 5065
  • [3] A meta-learning approach to personalized blood glucose prediction in type 1 diabetes
    Langarica, Saul
    Rodriguez-Fernandez, Maria
    Nunez, Felipe
    Doyle III, Francis J.
    [J]. CONTROL ENGINEERING PRACTICE, 2023, 135
  • [4] Feature Transformation for Efficient Blood Glucose Prediction in Type 1 Diabetes Mellitus Patients
    Butt, Hatim
    Khosa, Ikramullah
    Iftikhar, Muhammad Aksam
    [J]. DIAGNOSTICS, 2023, 13 (03)
  • [5] Blood Glucose Regulation in Patients with Type 1 Diabetes Mellitus: A Robust MRAC Approach
    Franco, Roberto
    Rios, Hector
    de Loza, Alejandra Ferreira
    Efimov, Denis
    Cassany, Louis
    Gucik-Derigny, David
    Cieslak, Jerome
    Henry, David
    [J]. 2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, : 661 - 666
  • [6] Prediction of Blood Glucose Levels in Patients with Type 1 Diabetes via LSTM Neural Networks
    Rodriguez Leon, Ciro
    Banos, Oresti
    Fernandez Mora, Oscar
    Martinez Bedmar, Alex
    Rufo Jimenez, Fernando
    Villalonga, Claudia
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, IWANN 2023, PT I, 2023, 14134 : 563 - 573
  • [7] Noninvasive Tissue Glucose Prediction in Patients with Type 1 Diabetes
    Pfutzner, Andreas
    Demircik, Filiz
    Lier, Alexander
    Ramljak, Sanja
    [J]. DIABETES, 2018, 67
  • [8] Blood Glucose Prediction from Nutrition Analytics in Type 1 Diabetes: A Review
    Lubasinski, Nicole
    Thabit, Hood
    Nutter, Paul W.
    Harper, Simon
    [J]. NUTRIENTS, 2024, 16 (14)
  • [9] Blood Glucose Prediction in Type 1 Diabetes Using Deep Learning on the Edge
    Zhu, Taiyu
    Kuang, Lei
    Li, Kezhi
    Zeng, Junming
    Herrero, Pau
    Georgiou, Pantelis
    [J]. 2021 IEEE INTERNATIONAL SYMPOSIUM ON CIRCUITS AND SYSTEMS (ISCAS), 2021,
  • [10] Online Prediction of Glucose Concentration in Type 1 Diabetes Using Extreme Learning Machines
    Georga, Eleni I.
    Protopappas, Vasilios C.
    Polyzos, Demosthenes
    Fotiadis, Dimitrios I.
    [J]. 2015 37TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2015, : 3262 - 3265