Direct numerical simulation of supersonic turbulent flows over rough surfaces

被引:18
|
作者
Modesti, Davide [1 ]
Sathyanarayana, Srikanth [2 ]
Salvadore, Francesco [3 ]
Bernardini, Matteo [2 ]
机构
[1] Delft Univ Technol, Fac Aerosp Engn, Kluyverweg 2, NL-2629 HS Delft, Netherlands
[2] Sapienza Univ Roma, Dipartimento Ingn Meccan & Aerospaziale, Via Eudossiana 18, I-00184 Rome, Italy
[3] Cineca, HPC Dept, Rome Off, Via Tizii 6 B, I-00185 Rome, Italy
关键词
supersonic flow; compressible turbulence; turbulent boundary layers; BOUNDARY-LAYERS; SKIN-FRICTION; HEAT-TRANSFER; REYNOLDS; DRAG; DNS;
D O I
10.1017/jfm.2022.393
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
We perform direct numerical simulation of supersonic turbulent channel flow over cubical roughness elements, spanning bulk Mach numbers M-b = 0.3-4, both in the transitional and fully rough regime. We propose a novel definition of roughness Reynolds number which is able to account for the viscosity variations at the roughness crest and should be used to compare rough-wall flows across different Mach numbers. As in the incompressible flow regime, the mean velocity profile shows a downward shift with respect to the baseline smooth wall cases, however, the magnitude of this velocity deficit is largely affected by the Mach number. Compressibility transformations are able to account for this effect, and data show a very good agreement with the incompressible fully rough asymptote, when the relevant roughness Reynolds number is used. Velocity statistics present outer layer similarity with the equivalent smooth wall cases, however, this does not hold for the thermal field, which is substantially affected by the roughness, even in the channel core. We show that this is a direct consequence of the quadratic temperature-velocity relation which is also valid for rough walls. Analysis of the heat transfer shows that the relative drag increase is always larger than the relative heat transfer enhancement, however, increasing the Mach number brings data closer to the Reynolds analogy line due to the rising relevance of the aerodynamic heating.
引用
收藏
页数:25
相关论文
共 50 条
  • [41] Turbulent supersonic channel flow: Direct numerical simulation and modeling
    Heinz, Stefan
    AIAA JOURNAL, 2006, 44 (12) : 3040 - 3050
  • [42] Direct numerical simulation of supersonic turbulent boundary layer flow
    Gao, H
    Fu, DX
    Ma, YW
    Li, XL
    CHINESE PHYSICS LETTERS, 2005, 22 (07) : 1709 - 1712
  • [43] Direct numerical simulation of turbulent supersonic compression ramp flow
    Adams, NA
    COMPUTATIONAL FLUID DYNAMICS '98, VOL 1, PARTS 1 AND 2, 1998, : 28 - 33
  • [44] Turbulent supersonic channel flow: Direct numerical simulation and modeling
    Heinz, Stefan
    AIAA Journal, 2006, 44 (12): : 3040 - 3050
  • [45] Direct numerical simulation of turbulent mixing in supersonic coflow jets
    Tian, Yulin
    Bai, Yuping
    Zhao, Quanbin
    Chong, Daotong
    Yan, Junjie
    PHYSICS OF FLUIDS, 2025, 37 (02)
  • [46] Direct numerical simulation of turbulent flow in an axisymmetric supersonic diffuser
    Ghosh, Somnath
    Friedrich, Rainer
    JOURNAL OF TURBULENCE, 2010, 11 (17): : 1 - 22
  • [47] Direct numerical simulation of a supersonic turbulent boundary layer over a compression-decompression corner
    Duan, Junyi
    Li, Xin
    Li, Xinliang
    Liu, Hongwei
    PHYSICS OF FLUIDS, 2021, 33 (06)
  • [48] Direct numerical simulation of wall turbulent flows with microbubbles
    Kanai, A
    Miyata, H
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2001, 35 (05) : 593 - 615
  • [49] Direct numerical simulation of the dynamics of sliding rough surfaces
    Viet Hung Dang
    Perret-Liaudet, Joel
    Scheibert, Julien
    Le Bot, Alain
    COMPUTATIONAL MECHANICS, 2013, 52 (05) : 1169 - 1183
  • [50] Turbulent transfer coefficients model for flows over permeable rough surfaces
    Sivykh, GF
    JOURNAL OF ENHANCED HEAT TRANSFER, 2000, 7 (01) : 11 - 22