Input-output robustness in simple bacterial signaling systems

被引:141
|
作者
Shinar, Guy [1 ,2 ]
Milo, Ron [1 ,2 ]
Martinez, Maria Rodriguez [1 ,2 ]
Alon, Uri [1 ,2 ]
机构
[1] Weizmann Inst Sci, Dept Mol Cell Biol, IL-76100 Rehovot, Israel
[2] Weizmann Inst Sci, Dept Phys Complex Syst, IL-76100 Rehovot, Israel
关键词
signal transduction; systems biology;
D O I
10.1073/pnas.0706792104
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Biological signaling systems produce an output, such as the level of a phosphorylated protein, in response to defined input signals. The output level as a function of the input level is called the system's input-output relation. One may ask whether this input-output relation is sensitive to changes in the concentrations of the system's components, such as proteins and ATP. Because component concentrations often vary from cell to cell, it might be expected that the input-output relation will likewise vary. If this is the case, different cells exposed to the same input signal will display different outputs. Such variability can be deleterious in systems where survival depends on accurate match of output to input. Here we suggest a mechanism that can provide input-output robustness, that is, an input-output relation that does not depend on variations in the concentrations of any of the system's components. The mechanism is based on certain bacterial signaling systems. It explains how specific molecular details can work together to provide robustness. Moreover, it suggests an approach that can help identify a wide family of nonequilibrium mechanisms that potentially have robust input-output relations.
引用
收藏
页码:19931 / 19935
页数:5
相关论文
共 50 条