A novel link prediction algorithm for protein-protein interaction networks by attributed graph embedding

被引:90
|
作者
Nasiri, Elahe [1 ]
Berahmand, Kamal [2 ]
Rostami, Mehrdad [3 ]
Dabiri, Mohammad [4 ]
机构
[1] Azarbaijan Shahid Madani Univ, Dept Informat Technol & Commun, Tabriz, Iran
[2] Queensland Univ Technol, Sch Comp Sci, Dept Sci & Engn, Brisbane, Qld, Australia
[3] Univ Kurdistan, Dept Comp Engn, Sanandaj, Iran
[4] Univ Kurdistan, Dept Plant Biotechnol, Sanandaj, Iran
关键词
Protein-protein interaction network; Link prediction; Graph embedding; Random walk; Feature selection; SEQUENCE;
D O I
10.1016/j.compbiomed.2021.104772
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The prediction of interactions in protein networks is very critical in various biological processes. In recent years, scientists have focused on computational approaches to predict the interactions of proteins. In protein-protein interaction (PPI) networks, each protein is accompanied by various features, including amino acid sequence, subcellular location, and protein domains. Embedding-based methods have been widely applied for many network analysis tasks, such as link prediction. The Deepwalk algorithm is one of the most popular graph embedding methods that capture the network structure using pure random walking. Here in this paper, we treat the protein-protein interaction prediction problem as a link prediction in attributed networks, and we use an attributed embedding approach to predict the interactions between proteins in the PPI network. In particular, the present paper seeks to present a modified version of Deepwalk based on feature selection for solving link prediction in the protein-protein interaction, which will benefit both network structure and protein features. More specifically the feature selection step consists of two distinct parts. First, a set of relevant features are selected from the original feature set, such that the dimensionality of features is reduced. Second, in the selected set of features, each feature is assigned with a weight based on its significance and therefore the contribution of each feature is distinguished from others. In this method, the new random walk model for link prediction will be introduced by integrating network structure and protein features, based on the assumption that two nodes on the network will be linked since they are nearby in the network. In order to justify the proposal, the authors carry out many experiments on protein-protein interaction networks for comparison with the state-of-the-art network embedding methods. The experimental results from the graphs indicate that our proposed approach is more capable compared to other link prediction approaches and increases the accuracy of prediction.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] An integration of deep learning with feature embedding for protein-protein interaction prediction
    Yao, Yu
    Du, Xiuquan
    Diao, Yanyu
    Zhu, Huaixu
    PEERJ, 2019, 7
  • [22] The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction
    Fang, Yi
    Sun, Mengtian
    Dai, Guoxian
    Ramain, Karthik
    IEEE-ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, 2016, 13 (01) : 76 - 85
  • [23] The Intrinsic Geometric Structure of Protein-Protein Interaction Networks for Protein Interaction Prediction
    Fang, Yi
    Sun, Mengtian
    Dai, Guoxian
    Ramani, Karthik
    INTELLIGENT COMPUTING IN BIOINFORMATICS, 2014, 8590 : 487 - 493
  • [24] An Effective Link-Based Clustering Algorithm for Detecting Overlapping Protein Complexes in Protein-Protein Interaction Networks
    Hu, Lun
    Zhang, Jun
    Pan, Xiangyu
    Luo, Xin
    Yuan, Huaqiang
    IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, 2021, 8 (04): : 3275 - 3289
  • [25] A Novel Approach to Modelling Protein-Protein Interaction Networks
    You, Zhuhong
    Lei, Yingke
    Ji, Zhen
    Zhu, Zexuan
    ADVANCES IN SWARM INTELLIGENCE, ICSI 2012, PT II, 2012, 7332 : 49 - 57
  • [26] Characterization and prediction of protein interfaces to infer protein-protein interaction networks
    Keskin, Ozlem
    Tuncbag, Nurcan
    Gursoy, Attila
    CURRENT PHARMACEUTICAL BIOTECHNOLOGY, 2008, 9 (02) : 67 - 76
  • [27] Global protein function prediction from protein-protein interaction networks
    Alexei Vazquez
    Alessandro Flammini
    Amos Maritan
    Alessandro Vespignani
    Nature Biotechnology, 2003, 21 : 697 - 700
  • [28] Global protein function prediction from protein-protein interaction networks
    Vazquez, A
    Flammini, A
    Maritan, A
    Vespignani, A
    NATURE BIOTECHNOLOGY, 2003, 21 (06) : 697 - 700
  • [29] Collective prediction of protein functions from protein-protein interaction networks
    Qingyao Wu
    Yunming Ye
    Michael K Ng
    Shen-Shyang Ho
    Ruichao Shi
    BMC Bioinformatics, 15
  • [30] Collective prediction of protein functions from protein-protein interaction networks
    Wu, Qingyao
    Ye, Yunming
    Ng, Michael K.
    Ho, Shen-Shyang
    Shi, Ruichao
    BMC BIOINFORMATICS, 2014, 15