Nonnegative-Constrained Joint Collaborative Representation With Union Dictionary for Hyperspectral Anomaly Detection

被引:22
|
作者
Chang, Shizhen [1 ]
Ghamisi, Pedram [1 ,2 ]
机构
[1] Inst Adv Res Artificial Intelligence IARAI, A-1030 Vienna, Austria
[2] Helmholtz Inst Freiberg Resource Technol, Helmholtz Zentrum Dresden Rossendorf, Machine Learning Grp, D-09599 Freiberg, Germany
关键词
Anomaly detection (AD); hyperspectral imagery; joint collaborative representation (CR); superpixel segmentation; TARGET DETECTION; LOW-RANK; ALGORITHM; GRAPH;
D O I
10.1109/TGRS.2022.3195339
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Recently, many collaborative representation (CR)-based algorithms have been proposed for hyperspectral anomaly detection (AD). CR-based detectors approximate the image by a linear combination of background dictionaries and the coefficient matrix and derive the detection map by utilizing recovery residuals. However, these CR-based detectors are often established on the premise of precise background features and strong image representation, which are very difficult to obtain. In addition, pursuing the coefficient matrix reinforced by the general l(2)-min is very time-consuming. To address these issues, a nonnegative-constrained joint collaborative representation (NJCR) model is proposed in this article for the hyperspectral AD task. To extract reliable samples, a union dictionary consisting of background and anomaly subdictionaries is designed, where the background subdictionary is obtained at the superpixel level and the anomaly subdictionary is extracted by the predetection process. And the coefficient matrix is jointly optimized by the Frobenius norm regularization with a nonnegative constraint and a sum-to-one constraint. After the optimization process, the abnormal information is finally derived by calculating the residuals that exclude the assumed background information. To conduct comparable experiments, the proposed nonnegative-constrained joint collaborative representation (NJCR) model and its kernel version (KNJCR) are tested in four hyperspectral images (HSIs) datasets and achieve superior results compared with other state-of-the-art detectors.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Total Variation and Sparsity Regularized Decomposition Model With Union Dictionary for Hyperspectral Anomaly Detection
    Cheng, Tongkai
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (02): : 1472 - 1486
  • [42] Kernel-Based Nonlinear Anomaly Detection via Union Dictionary for Hyperspectral Images
    Gao, Yenan
    Gu, Jiafeng
    Cheng, Tongkai
    Wang, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [43] Weighted Collaborative Representation and Sparse Difference-Based Hyperspectral Anomaly Detection
    Wang, Qianghui
    Hua, Wenshen
    Huang, Fuyu
    Zhang, Yan
    Yan, Yang
    CURRENT OPTICS AND PHOTONICS, 2020, 4 (03) : 210 - 220
  • [44] A BACKGROUND REFINEMENT COLLABORATIVE REPRESENTATION METHOD WITH SALIENCY WEIGHT FOR HYPERSPECTRAL ANOMALY DETECTION
    Hou, Zengfu
    Li, Wei
    Gao, Lianru
    Zhang, Bing
    Ma, Pengge
    Sun, Junling
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2412 - 2415
  • [45] Graph Regularized Low-Rank and Collaborative Representation for Hyperspectral Anomaly Detection
    Wu Qi
    Fan Yanguo
    Fan Bowen
    Yu Dingfeng
    LASER & OPTOELECTRONICS PROGRESS, 2022, 59 (12)
  • [46] Self-Paced Probabilistic Collaborative Representation for Anomaly Detection of Hyperspectral Images
    Zhang, Chendi
    Su, Hongjun
    Wang, Xiaolei
    Wu, Zhaoyue
    Yang, Yufan
    Xue, Zhaohui
    Du, Qian
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2024, 62 : 1 - 10
  • [47] Self-paced collaborative representation with manifold weighting for hyperspectral anomaly detection
    Ji, Yantao
    Jiang, Peilin
    Guo, Yu
    Zhang, Ruiteng
    Wang, Fei
    REMOTE SENSING LETTERS, 2022, 13 (06) : 599 - 610
  • [48] Saliency-Guided Collaborative-Competitive Representation for Hyperspectral Anomaly Detection
    Yang, Yufan
    Su, Hongjun
    Wu, Zhaoyue
    Du, Qian
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2023, 16 : 6843 - 6859
  • [49] Anomaly detection using morphology-based collaborative representation in hyperspectral imagery
    Imani, Maryam
    EUROPEAN JOURNAL OF REMOTE SENSING, 2018, 51 (01): : 457 - 471
  • [50] Band selection-based collaborative representation for anomaly detection in hyperspectral images
    Zhu, Dehui
    Du, Bo
    Zhang, Liangpei
    Yaogan Xuebao/Journal of Remote Sensing, 2020, 24 (04): : 427 - 438