Interactive Identification Method for Box-Jenkins Models

被引:0
|
作者
Xie, Li [1 ]
Yang, Huizhong [1 ]
Ding, Feng [1 ]
机构
[1] Jiangnan Univ, Control Sci & Engn Res Ctr, Wuxi 214122, Peoples R China
关键词
Parameter estimation; interactive; Box-Jenkins models; auxiliary model; hierarchical identification; SYSTEMS; ALGORITHMS;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper converts a Box-Jenkins model into two identification submodels with the system model parameters and the noise model parameters, respectively. However, the information vectors in the submodels contain unmeasurable variables, which leads the conventional recursive least squares algorithm impossible to generate the parameter estimates. In order to overcome this difficulty, the interactive least squares algorithm is derived by using the auxiliary model identification idea and the hierarchical identification principle. The simulation results indicate that the proposed algorithm has less computational burden and more accurate parameter estimation compared with the auxiliary model based recursive generalized extended least squares algorithm.
引用
收藏
页码:163 / 169
页数:7
相关论文
共 50 条
  • [41] Maximum-a-posteriori estimation of jump Box-Jenkins models
    Breschi, Valentina
    Piga, Dario
    Bemporad, Alberto
    2019 IEEE 58TH CONFERENCE ON DECISION AND CONTROL (CDC), 2019, : 1532 - 1537
  • [42] Prediction of stock price developments using the Box-Jenkins method
    Groda, Borivoj
    Vrbka, Jaromir
    INNOVATIVE ECONOMIC SYMPOSIUM 2017 (IES2017): STRATEGIC PARTNERSHIP IN INTERNATIONAL TRADE, 2017, 39
  • [43] REVISING FORECASTS OF ACCOUNTING EARNINGS - A COMPARISON WITH THE BOX-JENKINS METHOD
    BRANDON, CH
    JARRETT, JE
    KHUMAWALA, SB
    MANAGEMENT SCIENCE, 1983, 29 (02) : 256 - 263
  • [44] A COMPARISON OF THE ACCURACY OF THE BOX-JENKINS METHOD WITH THAT OF AUTOMATED FORECASTING METHODS
    POULOS, L
    KVANLI, A
    PAVUR, R
    INTERNATIONAL JOURNAL OF FORECASTING, 1987, 3 (02) : 261 - 267
  • [45] Automated Box-Jenkins forecasting modelling
    Lu, Y.
    AbouRizk, S. M.
    AUTOMATION IN CONSTRUCTION, 2009, 18 (05) : 547 - 558
  • [46] Alteration of Box-Jenkins Methodology by Implementing Genetic Algorithm Method
    Ismail, Zuhaimy
    Maarof, Mohd Zulariffin Md
    Fadzli, Mohammad
    2ND ISM INTERNATIONAL STATISTICAL CONFERENCE 2014 (ISM-II): EMPOWERING THE APPLICATIONS OF STATISTICAL AND MATHEMATICAL SCIENCES, 2015, 1643 : 745 - 750
  • [47] Parameter identification of Box-Jenkins systems based on the differential evolution algorithm
    Liu, Mengru
    Li, Junhong
    Zong, Tiancheng
    PROCEEDINGS OF THE 32ND 2020 CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2020), 2020, : 1557 - 1561
  • [48] Parameter identification of Box-Jenkins systems based on the particle swarm optimization
    Zong, Tiancheng
    Li, Junhong
    Li, Xiao
    Shang, Liangliang
    Zhang, Xiaojiao
    PROCEEDINGS OF THE 2019 31ST CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2019), 2019, : 1696 - 1701
  • [49] PRINCIPLES OF THE BOX-JENKINS APPROACH.
    Newbold, Paul
    Operational Research Quarterly, 1975, 26 (2 ii): : 397 - 412
  • [50] A Comparison of Models for Forecasting the Baltic Freight Index: Box-Jenkins Revisited
    Cullinane K.P.B.
    Mason K.J.
    Cape M.
    International journal of maritime economics, 1999, 1 (2): : 15 - 39