TENSOR PRODUCT OF CYCLIC A∞-ALGEBRAS AND THEIR KONTSEVICH CLASSES

被引:1
|
作者
Amorim, Lino [1 ]
Tu, Junwu [2 ]
机构
[1] Univ Oxford, Math Inst, Andrew Wiles Bldg,Radcliffe Observ Quarter, Oxford OX2 6GG, England
[2] Univ Missouri, Dept Math, Columbia, MO 65211 USA
关键词
COHOMOLOGY; HOMOLOGY; SPACE;
D O I
10.1090/tran/7321
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Given two cyclic A(infinity)-algebras A and B, in this paper we prove that there exists a cyclic A(infinity)-algebra structure on their tensor product A circle times B which is unique up to a cyclic A(infinity)-quasi-isomorphism. Furthermore, the Kontsevich class of A circle times B is equal to the cup product of the Kontsevich classes of A and B on the moduli space of curves.
引用
收藏
页码:1029 / 1061
页数:33
相关论文
共 50 条