Noncommutative Proj and coherent algebras

被引:1
|
作者
Polishchuk, A [1 ]
机构
[1] Univ Oregon, Dept Math, Eugene, OR 97403 USA
关键词
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that an abelian category equipped with an ample sequence of objects is equivalent to the quotient of the category of coherent modules over the corresponding algebra by the subcategory of finite-dimensional modules. In the Noetherian case a similar result was proved by Artin and Zhang in [2].
引用
收藏
页码:63 / 74
页数:12
相关论文
共 50 条
  • [31] NONCOMMUTATIVE MATRIX JORDAN ALGEBRAS
    BROWN, RB
    HOPKINS, NC
    TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 333 (01) : 137 - 155
  • [32] Noncommutative Blowups of Elliptic Algebras
    D. Rogalski
    S. J. Sierra
    J. T. Stafford
    Algebras and Representation Theory, 2015, 18 : 491 - 529
  • [33] Analysis in Noncommutative Algebras and Modules
    V. V. Zharinov
    Proceedings of the Steklov Institute of Mathematics, 2019, 306 : 90 - 101
  • [34] ANOSOV ACTIONS ON NONCOMMUTATIVE ALGEBRAS
    EMCH, GG
    NARNHOFER, H
    THIRRING, W
    SEWELL, GL
    JOURNAL OF MATHEMATICAL PHYSICS, 1994, 35 (11) : 5582 - 5599
  • [35] GENERALIZED NONCOMMUTATIVE JORDAN ALGEBRAS
    GOLDMAN, J
    KOKORIS, L
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1976, 23 (01): : A81 - A81
  • [36] Regularities in Noncommutative Banach Algebras
    Anar Dosiev
    Integral Equations and Operator Theory, 2008, 61 : 341 - 364
  • [37] GENERALIZATION OF NONCOMMUTATIVE JORDAN ALGEBRAS
    FLOREY, FG
    NOTICES OF THE AMERICAN MATHEMATICAL SOCIETY, 1972, 19 (01): : A81 - &
  • [38] Noncommutative duplicate and Leibniz algebras
    Pilabré N.B.
    Koulibaly A.
    Afrika Matematika, 2012, 23 (1) : 99 - 107
  • [39] Degenerations of noncommutative Heisenberg algebras
    Kaygorodov, Ivan
    Volkov, Yury
    COMMUNICATIONS IN ALGEBRA, 2023, 51 (10) : 4204 - 4213
  • [40] NONCOMMUTATIVE DUPLICATE AND VINBERG ALGEBRAS
    Tapsoba, Alexis
    Pilabre, Nakelgbamba Boukary
    JP JOURNAL OF ALGEBRA NUMBER THEORY AND APPLICATIONS, 2020, 48 (01): : 19 - 36