Improving gene expression programming performance by using differential evolution

被引:15
|
作者
Zhang, Qiongyun [1 ]
Xiao, Weimin [2 ]
Zhou, Chi [2 ]
Nelson, Peter C. [1 ]
机构
[1] Univ Illinois, Dept Comp Sci, Chicago, IL 60607 USA
[2] Res Ctr Motorola Labs, Phys & Digital Realizat, Schaumburg, IL 60196 USA
关键词
D O I
10.1109/ICMLA.2007.62
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Gene Expression Programming (GEP) is an evolutionary algorithm that incorporates both the idea of a simple, linear chromosome of fixed length used in Genetic Algorithms (GAs) and the tree structure of different sizes and shapes used in Genetic Programming (GP). As with other GP algorithms, GEP has difficulty finding appropriate numeric constants for terminal nodes in the expression trees. In this work, we describe a new approach of constant generation using Differential Evolution (DE), a real-valued GA robust and efficient at parameter optimization. Our experimental results on two. symbolic regression problems show that the approach significantly improves the performance of the GEP algorithm. The proposed approach can be easily extended to other Genetic Programming variations.
引用
收藏
页码:31 / +
页数:2
相关论文
共 50 条
  • [21] Improving performance in distributed embodied evolution: Distributed Differential Embodied Evolution
    Trueba, Pedro
    Prieto, Abraham
    2018 CONFERENCE ON ARTIFICIAL LIFE (ALIFE 2018), 2018, : 222 - 223
  • [22] Gene Expression Data Classification using Automatic Differential Evolution Based Algorithm
    Das, Ranjita
    Saha, Sripama
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 3124 - 3130
  • [23] Improving Performance of the Differential Evolution Algorithm Using Cyclic Decloning and Changeable Population Size
    Jedrzejowicz, Piotr
    Skakovski, Aleksander
    JOURNAL OF UNIVERSAL COMPUTER SCIENCE, 2016, 22 (06) : 874 - 893
  • [24] Performance Comparison of Differential Evolution Driving Analytic Programming for Regression
    Senkerik, Roman
    Voktorin, Adam
    Pluhacek, Michal
    Kadavy, Tomas
    Oplatkova, Zuzana Kominkova
    2017 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2017,
  • [25] System identification using Genetic Programming and Gene Expression Programming
    Flores, JJ
    Graff, M
    COMPUTER AND INFORMATION SCIENCES - ISCIS 2005, PROCEEDINGS, 2005, 3733 : 503 - 511
  • [26] Prediction of the hydrodynamic performance and cavitation volume of the marine propeller using gene expression programming
    Mahmoodi, Kumars
    Ghassemi, Hassan
    Nowruzi, Hashem
    Shora, Mohammad Mahdi
    SHIPS AND OFFSHORE STRUCTURES, 2019, 14 (07) : 723 - 736
  • [27] Efficient Evolution of Accurate Classification Rules Using a Combination of Gene Expression Programming and Clonal Selection
    Karakasis, Vasileios K.
    Stafylopatis, Andreas
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2008, 12 (06) : 662 - 678
  • [28] Assessing the performance of differential gene expression analyses
    不详
    PHARMACOGENOMICS, 2011, 12 (04) : 462 - 462
  • [29] Evolution and differential expression of a vertebrate vitellogenin gene cluster
    Finn, Roderick Nigel
    Kolarevic, Jelena
    Kongshaug, Heidi
    Nilsen, Frank
    BMC EVOLUTIONARY BIOLOGY, 2009, 9
  • [30] Cancer prediction with gene expression profiling and differential evolution
    Lakshmi, T. R. Vijaya
    Reddy, Ch Venkata Krishna
    SIGNAL IMAGE AND VIDEO PROCESSING, 2023, 17 (05) : 1855 - 1861