Automated detection of pulmonary nodules in helical computed tomography images of the thorax

被引:16
|
作者
Armato, SG [1 ]
Giger, ML [1 ]
Moran, CJ [1 ]
MacMahon, H [1 ]
Doi, K [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
computed tomography (CT); automated lung nodule detection; automated lung segmentation; artificial neural network;
D O I
10.1117/12.310968
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We are developing a fully automated method for the detection of lung nodules in helical computed tomography (CT) images of the thorax. In out computerized method, gray-level thresholding is used to segment the lungs from the thorax region within each CT section. A rolling ball operation is employed to more accurately delineate the lung boundaries, thereby incorporating peripheral nodules within the segmented lung regions. A multiple gray-level thresholding scheme is then used to capture nodules by creating a series of binary images in which a pixel is turned "on" if the corresponding image pixel has a gray level greater than the selected threshold. Groups of contiguous "on" pixels are identified as individual signals. To distinguish nodules from vessels, geometric descriptors are calculated for each signal detected in the series of binary images. The values of these descriptors are input to an artificial neural network, which allows for the elimination of a high percentage of false-positive signals.
引用
收藏
页码:916 / 919
页数:4
相关论文
共 50 条
  • [41] Dynamic computed tomography in solitary pulmonary nodules
    Bayraktaroglu, Selen
    Savas, Recep
    Basoglu, Oezen Kacmaz
    Cakan, Alparslan
    Mogulkoc, Nesrin
    Cagirici, Ufuk
    Alper, Huedaver
    [J]. JOURNAL OF COMPUTER ASSISTED TOMOGRAPHY, 2008, 32 (02) : 222 - 227
  • [42] Automated Detection of Lesion Regions in Lung Computed Tomography Images: A Review
    Han, Guang-Hui
    Liu, Xia-Bi
    Zheng, Guang-Yuan
    [J]. Zidonghua Xuebao/Acta Automatica Sinica, 2017, 43 (12): : 2071 - 2090
  • [43] Deep learning for automated cerebral aneurysm detection on computed tomography images
    Dai, Xilei
    Huang, Lixiang
    Qian, Yi
    Xia, Shuang
    Chong, Winston
    Liu, Junjie
    Di Ieva, Antonio
    Hou, Xiaoxi
    Ou, Chubin
    [J]. INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2020, 15 (04) : 715 - 723
  • [44] Deep learning for automated cerebral aneurysm detection on computed tomography images
    Xilei Dai
    Lixiang Huang
    Yi Qian
    Shuang Xia
    Winston Chong
    Junjie Liu
    Antonio Di Ieva
    Xiaoxi Hou
    Chubin Ou
    [J]. International Journal of Computer Assisted Radiology and Surgery, 2020, 15 : 715 - 723
  • [45] Ensemble classification for predicting the malignancy level of pulmonary nodules on chest computed tomography images
    Xiao, Ning
    Qiang, Yan
    Zia, Muhammad Bilal
    Wang, Sanhu
    Lian, Jianhong
    [J]. ONCOLOGY LETTERS, 2020, 20 (01) : 401 - 408
  • [46] PULMONARY NODULES STUDIED BY COMPUTED-TOMOGRAPHY
    PROTO, AV
    THOMAS, SR
    [J]. RADIOLOGY, 1985, 156 (01) : 149 - 153
  • [47] COMPUTED TOMOGRAPHY OF THORAX
    WANDTKE, JC
    [J]. AMERICAN REVIEW OF RESPIRATORY DISEASE, 1978, 117 (04): : 190 - 190
  • [48] Validation, comparison, and combination of algorithms for automatic detection of pulmonary nodules in computed tomography images: The LUNA16 challenge
    Setio, Arnaud Arindra Adiyoso
    Traverso, Alberto
    de Bel, Thomas
    Berens, Moira S. N.
    van den Bogaard, Cas
    Cerello, Piergiorgio
    Chen, Hao
    Dou, Qi
    Evelina Fantacci, Maria
    Geurts, Bram
    van der Gugten, Robbert
    Heng, Pheng Ann
    Jansen, Bart
    de Kaste, Michael M. J.
    Kotov, Valentin
    Lin, Jack Yu-Hung
    Manders, Jeroen T. M. C.
    Sonora-Mengana, Alexander
    Carlos Garcia-Naranjo, Juan
    Papavasileiou, Evgenia
    Prokop, Mathias
    Saletta, Marco
    Schaefer-Prokop, Cornelia M.
    Scholten, Ernst T.
    Scholten, Luuk
    Snoeren, Miranda M.
    Lopez Torres, Ernesto
    Vandemeulebroucke, Jef
    Walasek, Nicole
    Zuidhof, Guido C. A.
    van Ginneken, Bram
    Jacobs, Colin
    [J]. MEDICAL IMAGE ANALYSIS, 2017, 42 : 1 - 13
  • [49] Comparison of projection radiography and computed tomography for the detection of pulmonary nodules in the dog and cat
    Niesterok, C.
    Koehler, C.
    Ludewig, E.
    Alef, M.
    Oechtering, G.
    Kiefer, I.
    [J]. TIERAERZTLICHE PRAXIS AUSGABE KLEINTIERE HEIMTIERE, 2013, 41 (03): : 155 - 162
  • [50] Computer-Aided Detection of Pulmonary Nodules in Computed Tomography Using ClearReadCT
    Wagner, Anne-Kathrin
    Hapich, Arno
    Psychogios, Marios Nikos
    Teichgraeber, Ulf
    Malich, Ansgar
    Papageorgiou, Ismini
    [J]. JOURNAL OF MEDICAL SYSTEMS, 2019, 43 (03)