Automated detection of pulmonary nodules in helical computed tomography images of the thorax

被引:16
|
作者
Armato, SG [1 ]
Giger, ML [1 ]
Moran, CJ [1 ]
MacMahon, H [1 ]
Doi, K [1 ]
机构
[1] Univ Chicago, Dept Radiol, Chicago, IL 60637 USA
关键词
computed tomography (CT); automated lung nodule detection; automated lung segmentation; artificial neural network;
D O I
10.1117/12.310968
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
We are developing a fully automated method for the detection of lung nodules in helical computed tomography (CT) images of the thorax. In out computerized method, gray-level thresholding is used to segment the lungs from the thorax region within each CT section. A rolling ball operation is employed to more accurately delineate the lung boundaries, thereby incorporating peripheral nodules within the segmented lung regions. A multiple gray-level thresholding scheme is then used to capture nodules by creating a series of binary images in which a pixel is turned "on" if the corresponding image pixel has a gray level greater than the selected threshold. Groups of contiguous "on" pixels are identified as individual signals. To distinguish nodules from vessels, geometric descriptors are calculated for each signal detected in the series of binary images. The values of these descriptors are input to an artificial neural network, which allows for the elimination of a high percentage of false-positive signals.
引用
收藏
页码:916 / 919
页数:4
相关论文
共 50 条
  • [1] Automated detection of pulmonary nodules in helical CT images
    Lee, Y
    Hara, T
    Fujita, H
    Itoh, S
    Ishigaki, T
    [J]. CARS 2000: COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2000, 1214 : 1044 - 1044
  • [2] Automated detection of lung nodules in computed tomography images: a review
    S. L. A. Lee
    A. Z. Kouzani
    E. J. Hu
    [J]. Machine Vision and Applications, 2012, 23 : 151 - 163
  • [3] Automated detection of lung nodules in computed tomography images: a review
    Lee, S. L. A.
    Kouzani, A. Z.
    Hu, E. J.
    [J]. MACHINE VISION AND APPLICATIONS, 2012, 23 (01) : 151 - 163
  • [4] Automatic detection of spiculation of pulmonary nodules in computed tomography images
    Ciompi, F.
    Jacobs, C.
    Scholten, E. Th.
    van Riel, S. J.
    Wille, M. M. W.
    Prokop, M.
    van Ginneken, B.
    [J]. MEDICAL IMAGING 2015: COMPUTER-AIDED DIAGNOSIS, 2015, 9414
  • [5] COMPUTERIZED DETECTION OF PULMONARY NODULES IN COMPUTED-TOMOGRAPHY IMAGES
    GIGER, ML
    BAE, KT
    MACMAHON, H
    [J]. INVESTIGATIVE RADIOLOGY, 1994, 29 (04) : 459 - 465
  • [6] Automatic detection of subsolid pulmonary nodules in thoracic computed tomography images
    Jacobs, Colin
    van Rikxoort, Eva M.
    Twellmann, Thorsten
    Scholten, Ernst Th.
    de Jong, Pim A.
    Kuhnigk, Jan-Martin
    Oudkerk, Matthijs
    de Koning, Harry J.
    Prokop, Mathias
    Schaefer-Prokop, Cornelia
    van Ginneken, Bram
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 374 - 384
  • [7] DETECTION OF PULMONARY NODULES BY COMPUTED TOMOGRAPHY
    MUHM, JR
    BROWN, LR
    CROWE, JK
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 1977, 128 (02) : 267 - 270
  • [8] Prevalence of incidental pulmonary nodules on computed tomography of the thorax in trauma patients
    Hammerschlag, G.
    Cao, J.
    Gumm, K.
    Irving, L.
    Steinfort, D.
    [J]. INTERNAL MEDICINE JOURNAL, 2015, 45 (06) : 630 - 633
  • [9] Three-dimensional multicriterion automatic segmentation of pulmonary nodules of helical computed tomography images
    Zhao, BS
    Reeves, AP
    Yankelevitz, DF
    Henschke, CI
    [J]. OPTICAL ENGINEERING, 1999, 38 (08) : 1340 - 1347
  • [10] Application of the iris filter for automatic detection of pulmonary nodules on computed tomography images
    Juan Suarez-Cuenca, Jorge
    Tahoces, Pablo G.
    Souto, Miguel
    Lado, Maria J.
    Remy-Jardin, Martine
    Remy, Jacques
    Jose Vidal, Juan
    [J]. COMPUTERS IN BIOLOGY AND MEDICINE, 2009, 39 (10) : 921 - 933