Solitary-wave solutions to a dual equation of the Kaup-Boussinesq system
被引:15
|
作者:
Zhou, Jiangbo
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R ChinaJiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
Zhou, Jiangbo
[1
]
Tian, Lixin
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R ChinaJiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
Tian, Lixin
[1
]
Fan, Xinghua
论文数: 0引用数: 0
h-index: 0
机构:
Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R ChinaJiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
Fan, Xinghua
[1
]
机构:
[1] Jiangsu Univ, Fac Sci, Nonlinear Sci Res Ctr, Zhenjiang 212013, Jiangsu, Peoples R China
Dual equation of the Kaup-Boussinesq system;
Solitary-wave solution;
Bifurcation method;
CAMASSA-HOLM EQUATION;
DEGASPERIS-PROCESI EQUATION;
PEAKED SOLITONS;
BIFURCATIONS;
PEAKONS;
SMOOTH;
D O I:
10.1016/j.nonrwa.2009.11.017
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
In this paper, we employ the bifurcation theory of planar dynamical systems to investigate the travelling-wave solutions to a dual equation of the Kaup-Boussinesq system. The expressions for smooth solitary-wave solutions are obtained. Crown Copyright (C) 2009 Published by Elsevier Ltd. All rights reserved.
机构:
Texas A&M Univ, Dept Math & Stat, Corpus Christi, TX USANorth West Univ, Int Inst Symmetry Anal & Math Modelling, Dept Math Sci, Mafikeng Campus,Private Bag X 2046, ZA-2735 Mmabatho, South Africa
Abudiab, Mufid
论文数: 引用数:
h-index:
机构:
Khalique, Chaudry Masood
PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2016 (ICNAAM-2016),
2017,
1863