A Deep Learning Approach for Estimation of the Nearshore Bathymetry

被引:16
|
作者
Benshila, Rachid [1 ]
Thoumyre, Gregoire [1 ]
Al Najar, Mahmoud [1 ]
Abessolo, Gregoire [1 ]
Almar, Rafael [1 ]
Bergsma, Erwin [1 ]
Hugonnard, Guillaume [2 ]
Labracherie, Laurent [4 ]
Lavie, Benjamin [2 ]
Ragonneau, Tom [2 ]
Simon, Ehouarn [2 ]
Vieuble, Bastien [2 ]
Wilson, Dennis [3 ]
机构
[1] Univ Paul Sabatier, Lab Etudes Geophys & Oceanog Spatiales, Toulouse, France
[2] Inst Natl Polytech Toulouse, Toulouse, France
[3] Inst Super Aeronault & Espace, Toulouse, France
[4] ALTRAN, Toulouse, France
关键词
Bathymetry; deep Learning; Big Data; morphodynamics;
D O I
10.2112/SI95-197.1
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Bathymetry is an important factor in determining wave and current transformation in coastal and surface areas but is often poorly understood. However, its knowledge is crucial for hydro-morphodynamic forecasting and monitoring. Available for a long time only via in-situ measurement, the advent of video and satellite imagery has allowed the emergence of inversion methods from surface observations. With the advent of methods and architectures adapted to big data, a treatment via a deep learning approach seems now promising. This article provides a first overview of such possibilities with synthetic cases and its potential application on a real case.
引用
收藏
页码:1011 / 1015
页数:5
相关论文
共 50 条
  • [21] A timely and accurate approach to nearshore oil spill monitoring using deep learning and GIS
    Lau, Tsz-Kin
    Huang, Kai -Hsiang
    [J]. SCIENCE OF THE TOTAL ENVIRONMENT, 2024, 912
  • [22] Novel Data Assimilation Algorithm for Nearshore Bathymetry
    Ghorbanidehno, Hojat
    Lee, Jonghyun
    Farthing, Matthew
    Hesser, Tyler
    Kitanidis, Peter K.
    Darve, Eric F.
    [J]. JOURNAL OF ATMOSPHERIC AND OCEANIC TECHNOLOGY, 2019, 36 (04) : 699 - 715
  • [23] Applying dynamically updated nearshore bathymetry estimates to operational nearshore wave modeling
    Bak, A. Spicer
    Brodie, Katherine L.
    Hesser, Tyler J.
    Smith, Jane M.
    [J]. COASTAL ENGINEERING, 2019, 145 : 53 - 64
  • [24] cBathy: A robust algorithm for estimating nearshore bathymetry
    Holman, Rob
    Plant, Nathaniel
    Holland, Todd
    [J]. JOURNAL OF GEOPHYSICAL RESEARCH-OCEANS, 2013, 118 (05) : 2595 - 2609
  • [25] Georeferencing of UAV imagery for nearshore bathymetry retrieval
    Santos, Diogo
    Abreu, Tiago
    Silva, Paulo A.
    Baptista, Paulo
    [J]. INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2023, 125
  • [26] A Deep Learning Method for LiDAR Bathymetry Waveforms Processing
    Liu, Yaxin
    Yue, Jun
    Shi, Peng
    Wang, Yuchen
    Gao, Hongxiu
    Feng, Baocheng
    Liu, Zunnian
    Li, Hongsheng
    [J]. 2021 INTERNATIONAL CONFERENCE ON NEURAL NETWORKS, INFORMATION AND COMMUNICATION ENGINEERING, 2021, 11933
  • [27] A COMBINED COLOR AND WAVE-BASED APPROACH TO SATELLITE DERIVED BATHYMETRY USING DEEP LEARNING
    Al Najar, M.
    El Bennioui, Y.
    Thoumyre, G.
    Almar, R.
    Bergsma, E. W. J.
    Benshila, R.
    Delvit, J-M
    Wilson, D. G.
    [J]. XXIV ISPRS CONGRESS: IMAGING TODAY, FORESEEING TOMORROW, COMMISSION III, 2022, 43-B3 : 9 - 16
  • [28] Accurate tide level estimation: A deep learning approach
    Riazi, Amin
    [J]. OCEAN ENGINEERING, 2020, 198
  • [29] A Deep Learning Approach for the Estimation of Glomerular Filtration Rate
    Wang, Haishuai
    Bowe, Benjamin
    Cui, Zhicheng
    Yang, Hong
    Swamidass, S. Joshua
    Xie, Yan
    Al-Aly, Ziyad
    [J]. IEEE TRANSACTIONS ON NANOBIOSCIENCE, 2022, 21 (04) : 560 - 569
  • [30] Atmospheric visibility estimation: a review of deep learning approach
    Kabira Ait Ouadil
    Soufiane Idbraim
    Taha Bouhsine
    Nidhal Carla Bouaynaya
    Husam Alfergani
    Charles Cliff Johnson
    [J]. Multimedia Tools and Applications, 2024, 83 : 36261 - 36286