Selberg's orthogonality conjecture for automorphic L-functions

被引:22
|
作者
Liu, JY [1 ]
Ye, YB
机构
[1] Shandong Univ, Dept Math, Jinan 250100, Peoples R China
[2] Univ Iowa, Dept Math, Iowa City, IA 52242 USA
关键词
D O I
10.1353/ajm.2005.0029
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let pi and pi' be automorphic irreducible unitary cuspidal representations of GL(m)(Q(A)) and GL(m)'(Q(A)), respectively. Assume that either pi or pi' is self contragredient. Under the Ramanujan conjecture on pi and pi', we deduce a prime number theorem for L(s, pi x (pi) over tilde'), which can be used to asymptotically describe whether pi' congruent to pi, or pi' congruent to pi x \det (.)(i tau 0) for some nonzero tau(o) is an element of R, or pi' not congruent to pi x\ det (center dot)(it) for any t is an element of R. As a consequence, we prove the Selberg orthogonality conjecture, in a more precise form, for automorphic L-functions L(s, pi) and L(s, pi'), under the Ramanujan conjecture. When m = m' = 2 and pi and pi' are representations corresponding to holomorphic cusp forms, our results are unconditional.
引用
收藏
页码:837 / 849
页数:13
相关论文
共 50 条
  • [21] Universality for L-functions in the Selberg class
    H. Nagoshi
    J. Steuding
    Lithuanian Mathematical Journal, 2010, 50 : 293 - 311
  • [22] Iwasawa main conjecture for Rankin-Selberg p-adic L-functions
    Wan, Xin
    ALGEBRA & NUMBER THEORY, 2020, 14 (02) : 383 - 483
  • [23] Asai L-functions and Jacquet's conjecture
    Kable, AC
    AMERICAN JOURNAL OF MATHEMATICS, 2004, 126 (04) : 789 - 820
  • [24] On Selberg's Central Limit Theorem for Dirichlet L-functions
    Hsu, Po-Han
    Wong, Peng-Jie
    JOURNAL DE THEORIE DES NOMBRES DE BORDEAUX, 2020, 32 (03): : 685 - 710
  • [25] Fourier coefficients of automorphic L-functions
    Kim, Henry H.
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2023, 19 (10) : 2513 - 2521
  • [26] INTEGRAL MOMENTS OF AUTOMORPHIC L-FUNCTIONS
    Diaconu, Adrian
    Garrett, Paul
    JOURNAL OF THE INSTITUTE OF MATHEMATICS OF JUSSIEU, 2009, 8 (02) : 335 - 382
  • [27] Zero density for automorphic L-functions
    Ye, Yangbo
    Zhang, Deyu
    JOURNAL OF NUMBER THEORY, 2013, 133 (11) : 3877 - 3901
  • [28] Correlation of zeros of automorphic L-functions
    Liu JianYa
    YangBo Ye
    Science in China Series A: Mathematics, 2008, 51 : 1147 - 1166
  • [29] Correlation of zeros of automorphic L-functions
    Liu JianYa
    Ye YangBo
    SCIENCE IN CHINA SERIES A-MATHEMATICS, 2008, 51 (07): : 1147 - 1166
  • [30] On a certain sum of automorphic L-functions
    Chau, Ngo Bao
    AUTOMORPHIC FORMS AND RELATED GEOMETRY: ASSESSING THE LEGACY OF I.I. PIATETSKI-SHAPIRO, 2014, 614 : 337 - 343