Decay of correlations for normally hyperbolic trapping

被引:31
|
作者
Nonnenmacher, Stephane [1 ]
Zworski, Maciej [2 ]
机构
[1] CEA Saclay, CNRS, Inst Phys Theor, CEA DSM IPhT,Unite Rech, F-91191 Gif Sur Yvette, France
[2] Univ Calif Berkeley, Dept Math, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
RESONANCE EXPANSIONS; RESOLVENT; DENSITY; SPACES; BOUNDS;
D O I
10.1007/s00222-014-0527-y
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove that for evolution problems with normally hyperbolic trapping in phase space, correlations decay exponentially in time. Normally hyperbolic trapping means that the trapped set is smooth and symplectic and that the flow is hyperbolic in directions transversal to it. Flows with this structure include contact Anosov flows, classical flows in molecular dynamics, and null geodesic flows for black holes metrics. The decay of correlations is a consequence of the existence of resonance free strips for Green's functions (cut-off resolvents) and polynomial bounds on the growth of those functions in the semiclassical parameter.
引用
收藏
页码:345 / 438
页数:94
相关论文
共 50 条
  • [21] Holder regularity and exponential decay of correlations for a class of piecewise partially hyperbolic maps
    Bilbao, Rafael A.
    Bioni, Ricardo
    Lucena, Rafael
    NONLINEARITY, 2020, 33 (12) : 6790 - 6818
  • [22] Quenched decay of correlations for nonuniformly hyperbolic random maps with an ergodic driving system
    Alves, Jose F.
    Bahsoun, Wael
    Ruziboev, Marks
    Varandas, Paulo
    NONLINEARITY, 2023, 36 (06) : 3294 - 3318
  • [23] Good Inducing Schemes for Uniformly Hyperbolic Flows, and Applications to Exponential Decay of Correlations
    Melbourne, Ian
    Varandas, Paulo
    ANNALES HENRI POINCARE, 2024, 26 (3): : 921 - 945
  • [24] Examples of quasi-hyperbolic dynamical systems with slow decay of correlations.
    Le Borgne, Stephane
    COMPTES RENDUS MATHEMATIQUE, 2006, 343 (02) : 125 - 128
  • [25] A λ-lemma for normally hyperbolic invariant manifolds
    Cresson, Jacky
    Wiggins, Stephen
    REGULAR & CHAOTIC DYNAMICS, 2015, 20 (01): : 94 - 108
  • [26] LINEARIZATION OF NORMALLY HYPERBOLIC DIFFEOMORPHISMS AND FLOWS
    PUGH, C
    SHUB, M
    INVENTIONES MATHEMATICAE, 1970, 10 (03) : 187 - &
  • [27] Persistence Properties of Normally Hyperbolic Tori
    Broer, Henk
    Hanssmann, Heinz
    Wagener, Florian
    REGULAR & CHAOTIC DYNAMICS, 2018, 23 (02): : 212 - 225
  • [28] Persistence Properties of Normally Hyperbolic Tori
    Henk Broer
    Heinz Hanßmann
    Florian Wagener
    Regular and Chaotic Dynamics, 2018, 23 : 212 - 225
  • [29] On the computation of normally hyperbolic invariant manifolds
    Broer, HW
    Osinga, HM
    Vegter, G
    NONLINEAR DYNAMICAL SYSTEMS AND CHAOS, 1996, 19 : 423 - 447
  • [30] A λ-lemma for normally hyperbolic invariant manifolds
    Jacky Cresson
    Stephen Wiggins
    Regular and Chaotic Dynamics, 2015, 20 : 94 - 108