In Vivo Applications of CRISPR-Based Genome Editing in the Retina

被引:25
|
作者
Yu, Wenhan [1 ]
Wu, Zhijian [1 ]
机构
[1] NEI, Ocular Gene Therapy Core, NIH, Bethesda, MD 20892 USA
关键词
CRISPR; genome editing; gene therapy; retinal degeneration; photoreceptors; AAV vector; MOUSE MODEL; GENE; DNA; CELLS; CANCER; NUCLEASES; MECHANISM; MUSCLE; REPAIR; ROD;
D O I
10.3389/fcell.2018.00053
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
The rapidly evolving CRISPR-based genome editing technology is bringing revolutionary changes to the entirety of the life sciences. In this mini-review, we summarize the recent progress of in vivo applications of CRISPR genome editing in retinal studies. Non-viral and viral vector mediated delivery have been developed for temporary or persistent expression of CRISPR components in retinal cells. Although in theory CRISPR-based genome editing can correct a large number of mutant genes responsible for a variety of inherited retinal disorders (IRDs), precise gene modification relies on homology-directed repair (HDR)-the efficiency of which is not currently high enough for meaningful benefit. Development of CRISPR-based treatment for retinal diseases thus far has been mainly focused on gene knock-out or gene deletion in which the highly efficient non-homologous end joining (NHEJ) repair pathway is involved. Therapeutic benefits have been achieved in a few rodent models of retinal diseases following CRISPR treatment. The in vivo applications of CRISPR have also facilitated studies of gene function in the retina. As off-target events and immune responses are still the major concerns, continuous development of safer CRISPR genome editing systems is prerequisite for its clinical applications.
引用
收藏
页数:7
相关论文
共 50 条
  • [21] Recent advances in CRISPR-based genome editing technology and its applications in cardiovascular research
    Li, Zhen-Hua
    Wang, Jun
    Xu, Jing-Ping
    Wang, Jian
    Yang, Xiao
    MILITARY MEDICAL RESEARCH, 2023, 10 (01)
  • [22] CRISPR-GE: A Convenient Software Toolkit for CRISPR-Based Genome Editing
    Xie, Xianrong
    Ma, Xingliang
    Zhu, Qinlong
    Zeng, Dongchang
    Li, Gousi
    Liu, Yao-Guang
    MOLECULAR PLANT, 2017, 10 (09) : 1246 - 1249
  • [23] A Review of CRISPR-Based Genome Editing: Survival, Evolution and Challenges
    Ahmad, Hafiz Ishfaq
    Ahmad, Muhammad Jamil
    Asif, Akhtar Rasool
    Adnan, Muhammad
    Iqbal, Muhammad Kashif
    Mehmood, Khalid
    Muhammad, Sayyed Aun
    Bhuiyan, Ali Akbar
    Elokil, Abdelmotaleb
    Du, Xiaoyong
    Zhao, Changzhi
    Liu, Xiangdong
    Xie, Shengsong
    CURRENT ISSUES IN MOLECULAR BIOLOGY, 2018, 28 : 47 - 68
  • [24] Accounting for diversity in the design of CRISPR-based therapeutic genome editing
    Saha, Krishanu
    NATURE GENETICS, 2023, 55 (01) : 6 - 7
  • [25] CRISPR-Based Genome Editing: Advancements and Opportunities for Rice Improvement
    Zegeye, Workie Anley
    Tsegaw, Mesfin
    Zhang, Yingxin
    Cao, Liyong
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2022, 23 (08)
  • [26] CRISPR-based genome editing through the lens of DNA repair
    Nambiar, Tarun S.
    Baudrier, Lou
    Billon, Pierre
    Ciccia, Alberto
    MOLECULAR CELL, 2022, 82 (02) : 348 - 388
  • [27] Accounting for diversity in the design of CRISPR-based therapeutic genome editing
    Krishanu Saha
    Nature Genetics, 2023, 55 : 6 - 7
  • [28] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Gemberling, Matthew
    Siklenka, Keith
    Rodriguez, Erica
    Tonn-Eisinger, Katherine R.
    Barrera, Alejandro
    Liu, Fang
    Kantor, Ariel
    Li, Liqing
    Cigliola, Valentina
    Hazlett, Mariah F.
    Williams, Courtney
    Bartelt, Luke C.
    Madigan, Victoria J.
    Bodle, Josephine
    Daniels, Heather
    Rouse, Douglas C.
    Hilton, Isaac B.
    Asokan, Aravind
    Ciofani, Maria
    Poss, Kenneth D.
    Reddy, Timothy E.
    West, Anne E.
    Gersbach, Charles A.
    NATURE METHODS, 2021, 18 (08) : 965 - +
  • [29] Transgenic mice for in vivo epigenome editing with CRISPR-based systems
    Matthew P. Gemberling
    Keith Siklenka
    Erica Rodriguez
    Katherine R. Tonn-Eisinger
    Alejandro Barrera
    Fang Liu
    Ariel Kantor
    Liqing Li
    Valentina Cigliola
    Mariah F. Hazlett
    Courtney A. Williams
    Luke C. Bartelt
    Victoria J. Madigan
    Josephine C. Bodle
    Heather Daniels
    Douglas C. Rouse
    Isaac B. Hilton
    Aravind Asokan
    Maria Ciofani
    Kenneth D. Poss
    Timothy E. Reddy
    Anne E. West
    Charles A. Gersbach
    Nature Methods, 2021, 18 : 965 - 974
  • [30] Viral and nonviral nanocarriers for in vivo CRISPR-based gene editing
    Guo, Zhongyuan
    Zhu, Audrey T.
    Fang, Ronnie H.
    Zhang, Liangfang
    NANO RESEARCH, 2024, : 8904 - 8925