Hyperspectral unmixing using weighted sparse regression with total variation regularization

被引:9
|
作者
Ren, Longfei [1 ]
Ma, Zheng [2 ]
Bovolo, Francesca [3 ]
Hu, Jianming [4 ]
Bruzzone, Lorenzo [5 ]
机构
[1] Chinese Acad Sci, Aerosp Informat Res Inst, Key Lab Digital Earth Sci, Beijing, Peoples R China
[2] Southwest Jiaotong Univ, Sichuan Prov Key Lab Informat Coding & Transmiss, Chengdu, Peoples R China
[3] Fdn Bruno Kessler, Ctr Informat & Commun Technol, Trento, Italy
[4] Harbin Inst Technol, Res Ctr Space Opt Engn, Harbin, Peoples R China
[5] Univ Trento, Dept Informat Engn & Comp Sci, Trento, Italy
关键词
Symmetric Gauss-Seidel; alternating direction method of multipliers; fast projected gradient; hyperspectral imaging; spectral unmixing; weighted total variation regularization; NONNEGATIVE MATRIX FACTORIZATION; ENDMEMBER EXTRACTION; ALGORITHM; MINIMIZATION; IMAGES;
D O I
10.1080/01431161.2021.2018151
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
Spectral unmixing aims at identifying the pure spectral signatures in hyperspectral images and simultaneously estimating their proportions in each pixel of the scene. By using an available spectral library as a dictionary, sparse-regression-based approaches aim at finding a subset of the dictionary that can optimally model each pixel in a given hyperspectral image. l(1) regularizer has been widely considered as a regularization strategy to exploit the sparsity of the unmixing solution. Further sparsity can be imposed by also using weighting factors. However, most existing strategies focus on the unmixing solution ignoring the gradient information. To account for the gradient information in hyperspectral unmixing, we propose a weighted sparse regression with total variation (WSRTV) unmixing model. The proposed WSRTV model incorporates gradient information in the sparse regression formulation by means of the weighted total variation (WTV) regularizer. The model imposes sparsity on both the solution and the gradient to improve the performance of unmixing. A dual symmetric Gauss-Seidel alternating direction method of multipliers (sGSADMM) is designed to optimize the proposed model. The designed algorithm both handles the anisotropic and isotropic WTV. Simulated and real hyperspectral data demonstrate the effectiveness of the proposed framework.
引用
收藏
页码:6124 / 6151
页数:28
相关论文
共 50 条
  • [21] Weighted Total Variation Regularized Blind Unmixing for Hyperspectral Image
    Song, Hanjie
    Wu, Xing
    Zou, Anqi
    Liu, Yang
    Zou, Yongliao
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19
  • [22] Reweighted Sparse Regression for Hyperspectral Unmixing
    Zheng, Cheng Yong
    Li, Hong
    Wang, Qiong
    Chen, C. L. Philip
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2016, 54 (01): : 479 - 488
  • [23] Collaborative Sparse Regression for Hyperspectral Unmixing
    Iordache, Marian-Daniel
    Bioucas-Dias, Jose M.
    Plaza, Antonio
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2014, 52 (01): : 341 - 354
  • [24] IMPROVED LOCAL SPECTRAL UNMIXING OF HYPERSPECTRAL DATA USING AN ALGORITHMIC REGULARIZATION PATH FOR COLLABORATIVE SPARSE REGRESSION
    Drumetz, L.
    Tochon, G.
    Veganzones, M. A.
    Chanussot, J.
    Jutten, C.
    [J]. 2017 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2017, : 6190 - 6194
  • [25] Hyperspectral Unmixing Using Double Reweighted Collaborative Sparse Regression
    Li, Yan
    Wang, Shengqian
    [J]. ELEVENTH INTERNATIONAL CONFERENCE ON DIGITAL IMAGE PROCESSING (ICDIP 2019), 2019, 11179
  • [26] DUAL SPATIAL WEIGHTED SPARSE HYPERSPECTRAL UNMIXING
    Chen, Yonggang
    Deng, Chengzhi
    Zhang, Shaoquan
    Li, Fan
    Zhang, Ningyuan
    Wang, Shengqian
    [J]. 2022 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2022), 2022, : 1772 - 1775
  • [27] Robust Double Spatial Regularization Sparse Hyperspectral Unmixing
    Li, Fan
    Zhang, Shaoquan
    Deng, Chengzhi
    Liang, Bingkun
    Cao, Jingjing
    Wang, Shengqian
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 12569 - 12582
  • [28] A Fast Multiscale Spatial Regularization for Sparse Hyperspectral Unmixing
    Borsoi, Ricardo Augusto
    Imbiriba, Tales
    Moreira Bermudez, Jose Carlos
    Richard, Cedric
    [J]. IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2019, 16 (04) : 598 - 602
  • [29] Efficient Hyperspectral Sparse Regression Unmixing With Multilayers
    Shen, Xiangfei
    Chen, Lihui
    Liu, Haijun
    Su, Xi
    Wei, Wenjia
    Zhu, Xia
    Zhou, Xichuan
    [J]. IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
  • [30] DOUBLE REWEIGHTED SPARSE REGRESSION FOR HYPERSPECTRAL UNMIXING
    Wang, Rui
    Li, Heng-Chao
    Liao, Wenzhi
    Pizurica, Aleksandra
    [J]. 2016 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2016, : 6986 - 6989