Growth of TiO2 nanorod arrays on reduced graphene oxide with enhanced lithium-ion storage

被引:60
|
作者
He, Lifang [1 ,2 ]
Ma, Ruguang [1 ,2 ]
Du, Ning [3 ,4 ]
Ren, Jianguo [1 ,2 ]
Wong, Tailun [1 ,2 ]
Li, Yangyang [1 ,2 ]
Lee, Shuit Tong [1 ,2 ,5 ,6 ]
机构
[1] City Univ Hong Kong, Ctr Super Diamond Adv Films COSDAF, Hong Kong, Hong Kong, Peoples R China
[2] City Univ Hong Kong, Dept Phys & Mat Sci, Hong Kong, Hong Kong, Peoples R China
[3] Zhejiang Univ, State Key Lab Silicon Mat, Hangzhou 310027, Zhejiang, Peoples R China
[4] Zhejiang Univ, Dept Mat Sci & Engn, Hangzhou 310027, Zhejiang, Peoples R China
[5] Soochow Univ, Inst Funct Nano & Soft Mat FUNSOM, Suzhou 215123, Peoples R China
[6] Soochow Univ, Jiangsu Key Lab Carbon Based Funct Mat & Devices, Suzhou 215123, Peoples R China
关键词
ELECTROCHEMICAL CHARACTERIZATION; PHOTOCATALYTIC ACTIVITY; FACILE SYNTHESIS; LI; NANOTUBES; ELECTRODE; ELECTROACTIVITY; PERFORMANCE; NANOSHEETS; EFFICIENT;
D O I
10.1039/c2jm33571a
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We demonstrate the synthesis of a sandwich-like nanocomposite by planting rutile TiO2 nanorods onto reduced graphene oxide (RGO) via a modified seed-assisted hydrothermal growth method. The synthetic process consists of functionalization of graphene oxide (GO), followed by hydrolytic deposition of TiO2 nanoparticles on GO and reduction, and finally hydrothermal growth of rutile TiO2 nanorods on RGO. The resultant nanocomposite, i.e. rutile TiO2 nanorod arrays on RGO (TONRAs-RGO), exhibits largely enhanced reversible charge-discharge capacity and rate capability compared to bare TiO2 nanorods (TONRs) due to its unique structure and superior conductivity. The rate performance of the nanocomposite is also better than that of anatase TiO2 nanoparticles. This study will inspire better design of RGO-based nanocomposites for high energy density lithium-ion battery applications.
引用
收藏
页码:19061 / 19066
页数:6
相关论文
共 50 条
  • [41] Multifunctional TiO2 Nanotube-Matrix Composites with Enhanced Photocatalysis and Lithium-Ion Storage Performances
    Zhang, Mengmeng
    Li, Hui
    Wang, Chunrui
    MATERIALS, 2023, 16 (07)
  • [42] Rutile TiO2 nanorod arrays directly grown on Ti foil substrates towards lithium-ion micro-batteries
    Dong, Shanmu
    Wang, Haibo
    Gu, Lin
    Zhou, Xinhong
    Liu, Zhihong
    Han, Pengxian
    Wang, Ya
    Chen, Xiao
    Cui, Guanglei
    Chen, Liquan
    THIN SOLID FILMS, 2011, 519 (18) : 5978 - 5982
  • [43] Anchoring tungsten oxide nanorods on TiO2 nanowires coupled with carbon for efficient lithium-ion storage
    Wang, Teng
    Qin, Yifan
    Hu, Renquan
    Wei, Zehui
    Yang, Yong
    DALTON TRANSACTIONS, 2023, 52 (46) : 17299 - 17307
  • [45] Reducing the SiOx layer on Si/reduced graphene oxide enables fast and reversible lithium-ion storage capability for lithium-ion batteries
    Zhang, Kaiyuan
    Gu, Xin
    Jiang, Xiaolei
    Cui, Lifeng
    Yang, Jian
    MATERIALS TODAY COMMUNICATIONS, 2024, 39
  • [46] Carbon treated self-ordered TiO2 nanotube arrays with enhanced lithium-ion intercalation performance
    Kim, Hyun Sik
    Yu, Seung-Ho
    Sung, Yung-Eun
    Kang, Soon Hyung
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 597 : 275 - 281
  • [47] Reduced graphene oxide composite aerogels for lithium-ion batteries
    Oznur Kaya Cakmak
    Journal of Porous Materials, 2022, 29 : 1771 - 1778
  • [48] Reduced graphene oxide composite aerogels for lithium-ion batteries
    Cakmak, Oznur Kaya
    JOURNAL OF POROUS MATERIALS, 2022, 29 (06) : 1771 - 1778
  • [49] In situ synthesized SnO2 nanorod/reduced graphene oxide low-dimensional structure for enhanced lithium storage
    Zhang, Wei
    Xiao, Xuezhang
    Zhang, Yiwen
    Li, Junpeng
    Zhong, Jiayi
    Li, Meng
    Fan, Xiulin
    Wang, Chuntao
    Chen, Lixin
    NANOTECHNOLOGY, 2018, 29 (10)
  • [50] Origin of Visible Light Photoactivity of Reduced Graphene Oxide/TiO2 by in Situ Hydrothermal Growth of Undergrown TiO2 with Graphene Oxide
    Long, Mingce
    Qin, Yalin
    Chen, Chen
    Guo, Xiaoyan
    Tan, Beihui
    Cai, Weimin
    JOURNAL OF PHYSICAL CHEMISTRY C, 2013, 117 (32): : 16734 - 16741