Exploring Relations of Visual Codes for Image Classification

被引:0
|
作者
Huang, Yongzhen [1 ]
Huang, Kaiqi [1 ]
Wang, Chong [1 ]
Tan, Tieniu [1 ]
机构
[1] Chinese Acad Sci, Natl Lab Pattern Recognit, Inst Automat, Beijing, Peoples R China
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
The classic Bag-of-Features (BOF) model and its extensional work use a single value to represent a visual code. This strategy ignores the relation of visual codes. In this paper, we explore this relation and propose a new algorithm for image classification. It consists of two main parts: 1) construct the codebook graph wherein a visual code is linked with other codes; 2) describe each local feature using a pair of related codes, corresponding to an edge of the graph. Our approach contains richer information than previous BOF models. Moreover, we demonstrate that these models are special cases of ours. Various coding and pooling algorithms can be embedded into our framework to obtain better performance. Experiments on different kinds of image classification databases demonstrate that our approach can stably achieve excellent performance compared with various BOF models.
引用
收藏
页码:1649 / 1656
页数:8
相关论文
共 50 条
  • [31] Exploring Hierarchical Convolutional Features for Hyperspectral Image Classification
    Cheng, Gong
    Li, Zhenpeng
    Han, Junwei
    Yao, Xiwen
    Guo, Lei
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2018, 56 (11): : 6712 - 6722
  • [32] Exploring Vision Transformers for Polarimetric SAR Image Classification
    Dong, Hongwei
    Zhang, Lamei
    Zou, Bin
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
  • [33] Causal Visual Feature Extraction for Image Classification Interpretation
    Bao, Chengzhuan
    Chen, Dehua
    Wang, Mei
    Pan, Qiao
    2023 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS, IJCNN, 2023,
  • [34] Acoustic cues to visual detection: A classification image study
    Pascucci, David
    Megna, Nicola
    Panichi, Michela
    Baldassi, Stefano
    JOURNAL OF VISION, 2011, 11 (06): : 1 - 11
  • [35] Bag-of-Visual-Ngrams for Histopathology Image Classification
    Pastor Lopez-Monroy, A.
    Montes-y-Gomez, Manuel
    Jair Escalante, Hugo
    Cruz-Roa, Angel
    Gonzalez, Fabio A.
    IX INTERNATIONAL SEMINAR ON MEDICAL INFORMATION PROCESSING AND ANALYSIS, 2013, 8922
  • [36] An Improved Bag of Visual Words Model for Image Classification
    Guo Ye
    Meng Qingchao
    AGRO FOOD INDUSTRY HI-TECH, 2017, 28 (03): : 3261 - 3265
  • [37] Large Visual Words for Large Scale Image Classification
    Tang, Sheng
    Chen, Hui
    Lv, Ke
    Zhang, Yong-Dong
    2015 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP), 2015, : 1170 - 1174
  • [38] Mammogram image visual enhancement, mass segmentation and classification
    Al-Najdawi, Nijad
    Biltawi, Mariam
    Tedmori, Sara
    APPLIED SOFT COMPUTING, 2015, 35 : 175 - 185
  • [39] Visual word spatial arrangement for image retrieval and classification
    Penatti, Otavio A. B.
    Silva, Fernanda B.
    Valle, Eduardo
    Gouet-Brunet, Valerie
    Torres, Ricardo da S.
    PATTERN RECOGNITION, 2014, 47 (02) : 705 - 720
  • [40] Visual Tree Convolutional Neural Network in Image Classification
    Liu, Yuntao
    Dou, Yong
    Jin, Ruochun
    Qiao, Peng
    2018 24TH INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION (ICPR), 2018, : 758 - 763