Time-Dependent Pore Filling

被引:6
|
作者
Sun, Zhonghao [1 ]
Jang, Junbong [2 ]
Santamarina, J. Carlos [1 ]
机构
[1] King Abdullah Univ Sci & Technol, Earth Sci & Engn, Thuwal, Saudi Arabia
[2] Integrated Stat Inc, Woods Hole, MA USA
关键词
fluid displacement; diffusive mass transport; trapped fluids; superhydrophobic surface; POROUS-MEDIA; CONTACT-ANGLE; ORGANIC LIQUIDS; WETTING LIQUID; SCALE ANALYSIS; SNAP-OFF; OIL; DISSOLUTION; WATER; DISPLACEMENT;
D O I
10.1029/2018WR023066
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Capillarity traps fluids in porous media during immiscible fluid displacement. Most field situations involve relatively long time scales, such as hydrocarbon migration into reservoirs, resource recovery, nonaqueous phase liquid remediation, geological CO2 storage, and sediment-atmosphere interactions. Yet laboratory studies and numerical simulations of capillary phenomena rarely consider the impact of time on these processes. We use time-lapse microphotography to record the evolution of saturation in air- or hydrocarbon-filled capillary tubes submerged in water to investigate long-term pore filling phenomena beyond imbibition. Microphotographic sequences capture a lively pore filling history where various concurrent physical phenomena coexist. Dissolution and diffusion play a central role. Observations indicate preferential transport of the wetting liquid along corners, vapor condensation, capillary flow induced by asymmetrical interfaces, and interface pinning that defines the diffusion length. Other processes include internal snap-offs, fluid redistribution, and changes in wettability as fluids dissolve into each other. Overall, the rate of pore filling is diffusion-controlled for a given interfacial configuration; diffusive transport takes place at a constant rate for pinned interfaces and is proportional to the square root of time for free interfaces where the diffusion length increases with time.
引用
收藏
页码:10242 / 10253
页数:12
相关论文
共 50 条
  • [21] Time-dependent interventions
    Max Harry Weil
    Wanchun Tang
    Critical Care, 8
  • [22] TIME-DEPENDENT IONIZATION
    PREUSSNER, PR
    JOURNAL OF COMPUTATIONAL PHYSICS, 1978, 29 (02) : 283 - 288
  • [23] Time-dependent interventions
    Weil, MH
    Tang, WC
    CRITICAL CARE, 2004, 8 (01): : 11 - 12
  • [24] Time-dependent embedding
    Inglesfield, J. E.
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2008, 20 (09)
  • [25] TIME-DEPENDENT QUEUES
    KELLER, JB
    SIAM REVIEW, 1982, 24 (04) : 401 - 412
  • [26] TIME-DEPENDENT NUCLEATION
    SHIZGAL, B
    BARRETT, JC
    JOURNAL OF CHEMICAL PHYSICS, 1989, 91 (10): : 6505 - 6518
  • [27] Time-dependent learning
    Berri, J
    Atif, Y
    Benlamri, R
    IEEE INTERNATIONAL CONFERENCE ON ADVANCED LEARNING TECHNOLOGIES, PROCEEDINGS, 2004, : 816 - 818
  • [28] Time-dependent Springback
    H. Lim
    M. G. Lee
    J. H. Sung
    R. H. Wagoner
    International Journal of Material Forming, 2008, 1 : 157 - 160
  • [29] TIME-DEPENDENT INFORMATIONS
    MUKHERJEE, SK
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 1982, 13 (06): : 622 - 632
  • [30] TIME-DEPENDENT SEISMOLOGY
    ANDERSON, DL
    WHITCOMB, JH
    JOURNAL OF GEOPHYSICAL RESEARCH, 1975, 80 (11): : 1497 - 1503