Potential Sources and Formations of the PM2.5 Pollution in Urban Hangzhou

被引:38
|
作者
Wu, Jian [1 ,2 ]
Xu, Chang [3 ,4 ]
Wang, Qiongzhen [2 ]
Cheng, Wen [1 ]
机构
[1] Xian Univ Technol, Inst Water Resources & Hydroelect Engn, Xian 710048, Peoples R China
[2] Zhejiang Environm Sci & Design Inst, Hangzhou 310007, Zhejiang, Peoples R China
[3] Hangzhou Environm Monitoring Ctr Stn, Hangzhou 310007, Zhejiang, Peoples R China
[4] Shanghai Acad Environm Sci, Shanghai 200233, Peoples R China
来源
ATMOSPHERE | 2016年 / 7卷 / 08期
基金
中国国家自然科学基金;
关键词
PM2.5; gaseous pollutants; source contribution; secondary transformation; YANGTZE-RIVER DELTA; SEVERE HAZE POLLUTION; EAST CHINA SEA; SOURCE APPORTIONMENT; REGIONAL HAZE; CARBONACEOUS AEROSOLS; ATMOSPHERIC AEROSOLS; CHEMICAL-COMPOSITION; SECONDARY FORMATION; EVOLUTION PROCESSES;
D O I
10.3390/atmos7080100
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Continuous measurements of meteorological parameters, gaseous pollutants, particulate matters, and the major chemical species in PM2.5 were conducted in urban Hangzhou from 1 September to 30 November 2013 to study the potential sources and formations of PM2.5 pollution. The average PM2.5 concentration was 69 mu g . m(-3), similar to 97% higher than the annual concentration limit in the national ambient air quality standards (NAAQS) of China. Relative humidity (RH) and wind speed (WS) were two important factors responsible for the increase of PM2.5 concentration, with the highest value observed under RH of 70%-90%. PM2.5 was in good correlation with both NO2 and CO, but not with SO2, and the potential source contribution function (PSCF) results displayed that local emissions were important potential sources contributing to the elevated PM2.5 and NO2 in Hangzhou. Thus, local vehicle emission was suggested as a major contribution to the PM2.5 pollution. Concentrations of NO2 and CO significantly increased in pollution episodes, while the SO2 concentration even decreased, implying local emission rather than region transport was the major source contributing to the formation of pollution episodes. The sum of SO42-, NO3-, and NH4+ accounted for similar to 50% of PM2.5 in mass in pollution episodes and the NO3-/EC ratios were significantly elevated, revealing that the formation of secondary inorganic species, particularly NO3-, was an important contributor to the PM2.5 pollution in Hangzhou. This study highlights that controlling local pollution emissions was essential to reduce the PM2.5 pollution in Hangzhou, and the control of vehicle emission in particular should be further promoted in the future.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Identifying urban emission sources and their contribution to the oxidative potential of fine particulate matter (PM2.5) in Kuwait
    Aldekheel, Mohammad
    Tohidi, Ramin
    Al-Hemoud, Ali
    Alkudari, Fahad
    Verma, Vishal
    Subramanian, P. S. Ganesh
    Sioutas, Constantinos
    ENVIRONMENTAL POLLUTION, 2024, 343
  • [32] The pollution characteristics and sources of PM1 and PM2.5 during heavy pollution events in winter in Zhengzhou, China
    Zhang, Hong-Yu
    Zhai, Shi-Ting
    Yuan, Ming-Hao
    Xu, Yi-Fei
    Wang, Shen-Bo
    Zhang, Rui-Qin
    Zhongguo Huanjing Kexue/China Environmental Science, 2024, 44 (12): : 6617 - 6627
  • [33] Heavy pollution episodes, transport pathways and potential sources of PM2.5 during the winter of 2013 in Chengdu (China)
    Liao, Tingting
    Wang, Shan
    Ai, Jie
    Gui, Ke
    Duan, Bolong
    Zhao, Qi
    Zhang, Xiao
    Jiang, Wanting
    Sun, Yang
    SCIENCE OF THE TOTAL ENVIRONMENT, 2017, 584 : 1056 - 1065
  • [34] Chemical Characteristics and Potential Sources of PM2.5 in Shahe City during Severe Haze Pollution Episodes in the Winter
    Liu, Xiaoyong
    Pan, Xiaole
    Wang, Zifa
    He, Hong
    Wang, Dawei
    Liu, Hang
    Tian, Yu
    Xiang, Weiling
    Li, Jie
    AEROSOL AND AIR QUALITY RESEARCH, 2020, 20 (12) : 2741 - 2753
  • [35] Emission and oxidative potential of PM2.5 generated by nine indoor sources
    Hu, Hao
    Ye, Jin
    Liu, Cong
    Yan, Lan
    Yang, Fan
    Qian, Hua
    BUILDING AND ENVIRONMENT, 2023, 230
  • [36] Influence of PM2.5 pollution on public health based on urban panel data
    基于城市面板数据的PM2.5对公共健康的影响
    Zeng, Xian-Gang (zengxg@ruc.edu.cn), 1600, Chinese Society for Environmental Sciences (40): : 5451 - 5458
  • [37] Variability and potential sources of summer PM2.5 in the Northeastern United States
    Saunders, Rolando O.
    Waugh, Darryn W.
    ATMOSPHERIC ENVIRONMENT, 2015, 117 : 259 - 270
  • [38] Occurrence and Potential Sources of Quinones Associated with PM2.5 in Guadalajara, Mexico
    Barradas-Gimate, Adriana
    Alfonso Murillo-Tovar, Mario
    de Jesus Diaz-Torres, Jose
    Hernandez-Mena, Leonel
    Saldarriaga-Norena, Hugo
    Maria Delgado-Saborit, Juana
    Lopez-Lopez, Alberto
    ATMOSPHERE, 2017, 8 (08):
  • [39] Identifying the spatial effects and driving factors of urban PM2.5 pollution in China
    Cheng, Zhonghua
    Li, Lianshui
    Liu, Jun
    ECOLOGICAL INDICATORS, 2017, 82 : 61 - 75
  • [40] Ranking the suitability of common urban tree species for controlling PM2.5 pollution
    Yang, Jun
    Chang, Yamin
    Yan, Pengbo
    ATMOSPHERIC POLLUTION RESEARCH, 2015, 6 (02) : 267 - 277