共 50 条
Effect of high carbon incorporation in Co substrates on the epitaxy of hexagonal boron nitride/graphene heterostructures
被引:13
|作者:
Khanaki, Alireza
[1
]
Tian, Hao
[1
]
Xu, Zhongguang
[1
]
Zheng, Renjing
[1
]
He, Yanwei
[1
]
Cui, Zhenjun
[1
]
Yang, Jingchuan
[1
]
Liu, Jianlin
[1
]
机构:
[1] Univ Calif Riverside, Dept Elect & Comp Engn, Quantum Struct Lab, Riverside, CA 92521 USA
关键词:
hexagonal boron nitride;
graphene;
heterostructure;
molecular beam epitaxy;
cobalt substrate;
epitaxial growth;
H-BN;
NITRIDE;
GRAPHENE;
GROWTH;
TRANSITION;
DEPOSITION;
MONOLAYER;
SEGREGATION;
FILM;
D O I:
10.1088/1361-6528/aa9c58
中图分类号:
TB3 [工程材料学];
学科分类号:
0805 ;
080502 ;
摘要:
We carried out a systematic study of hexagonal boron nitride/graphene (h-BN/G) heterostructure growth by introducing high incorporation of a carbon (C) source on a heated cobalt (Co) foil substrate followed by boron and nitrogen sources in a molecular beam epitaxy system. With the increase of C incorporation in Co, three distinct regions of h-BN/G heterostructures were observed from region (1) where the C saturation was not attained at the growth temperature (900 degrees C) and G was grown only by precipitation during the cooling process to form a 'G network' underneath the h-BN film; to region (2) where the Co substrate was just saturated by C atoms at the growth temperature and a part of G growth occurs isothermally to form G islands and another part by precipitation, resulting in a non-uniform h-BN/G film; and to region (3) where a continuous layered G structure was formed at the growth temperature and precipitated C atoms added additional G layers to the system, leading to a uniform h-BN/G film. It is also found that in all three h-BN/G heterostructure growth regions, a 3 h h-BN growth at 900 degrees C led to h-BN film with a thickness of 1-2 nm, regardless of the underneath G layers' thickness or morphology. Growth time and growth temperature effects have been also studied.
引用
收藏
页数:9
相关论文