Fractional Poisson Fields

被引:10
|
作者
Leonenko, Nikolai [1 ]
Merzbach, Ely [2 ]
机构
[1] Cardiff Univ, Sch Math, Cardiff CF24 4AG, S Glam, Wales
[2] Bar Ilan Univ, Dept Math, IL-52900 Ramat Gan, Israel
关键词
Poisson fields; Long-range dependence; Subordinator; Inverse subordinator; DIFFERENTIAL-EQUATIONS; PEARSON DIFFUSIONS; TIMES;
D O I
10.1007/s11009-013-9354-7
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Using inverse subordinators and Mittag-Leffler functions, we present a new definition of a fractional Poisson process parametrized by points of the Euclidean space R-i(2). Some properties are given and, in particular, we prove a long-range dependence property.
引用
收藏
页码:155 / 168
页数:14
相关论文
共 50 条
  • [31] On a Fractional Generalization of the Poisson Probability Distribution
    Uchaikin V.V.
    Kozhemjakina E.V.
    Journal of Mathematical Sciences, 2020, 248 (1) : 99 - 104
  • [32] Fractional Poisson process with random drift
    Beghin, Luisa
    D'Ovidio, Mirko
    ELECTRONIC JOURNAL OF PROBABILITY, 2014, 19
  • [33] A Semigroup Approach to Fractional Poisson Processes
    Carlos Lizama
    Rolando Rebolledo
    Complex Analysis and Operator Theory, 2018, 12 : 777 - 785
  • [34] Full characterization of the fractional Poisson process
    Politi, Mauro
    Kaizoji, Taisei
    Scalas, Enrico
    EPL, 2011, 96 (02)
  • [35] A Semigroup Approach to Fractional Poisson Processes
    Lizama, Carlos
    Rebolledo, Rolando
    COMPLEX ANALYSIS AND OPERATOR THEORY, 2018, 12 (03) : 777 - 785
  • [36] The space-fractional Poisson process
    Orsingher, Enzo
    Polito, Federico
    STATISTICS & PROBABILITY LETTERS, 2012, 82 (04) : 852 - 858
  • [37] Fractional Levy Fields
    Cohen, Serge
    LEVY MATTERS II: RECENT PROGRESS IN THEORY AND APPLICATIONS: FRACTIONAL LEVY FIELDS, AND SCALE FUNCTIONS, 2012, 2061 : 1 - 95
  • [38] A New Fractional Poisson Process Governed by a Recursive Fractional Differential Equation
    Zhang, Zhehao
    FRACTAL AND FRACTIONAL, 2022, 6 (08)
  • [39] Fractional Poisson field and fractional Brownian field: why are they resembling but different?
    Bierme, Hermine
    Demichel, Yann
    Estrade, Anne
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2013, 18 : 1 - 13
  • [40] Tempered fractional Poisson processes and fractional equations with Z-transform
    Gupta, Neha
    Kumar, Arun
    Leonenko, Nikolai
    STOCHASTIC ANALYSIS AND APPLICATIONS, 2020, 38 (05) : 939 - 957