Modelling the role of marine particle on large scale 231Pa, 230Th, Iron and Aluminium distributions

被引:11
|
作者
Dutay, J. -C. [1 ]
Tagliabue, A. [2 ]
Kriest, I. [3 ]
van Hulten, M. M. P. [4 ]
机构
[1] Lab Sci Climat & Environm, Gif Sur Yvette, France
[2] Univ Liverpool, Sch Environm Sci, Liverpool L69 3BX, Merseyside, England
[3] GEOMAR Helmholtz Ctr Ocean Res, Kiel, Germany
[4] Royal Netherlands Meteorol Inst KNMI, De Bilt, Netherlands
基金
美国国家科学基金会;
关键词
DISSOLVED IRON; FRACTIONATING TH-230; LITHOGENIC CLAYS; THORIUM ISOTOPES; OCEAN; CIRCULATION; CYCLE; FLUX; SEDIMENTARY; VARIABILITY;
D O I
10.1016/j.pocean.2015.01.010
中图分类号
P7 [海洋学];
学科分类号
0707 ;
摘要
The distribution of trace elements in the ocean is governed by the combined effects of various processes, and by exchanges with external sources. Modelling these represents an opportunity to better understand and quantify the mechanisms that regulate the oceanic tracer cycles. Observations collected during the GEOTRACES program provide an opportunity to improve our knowledge regarding processes that should be considered in biogeochemical models to adequately represent the distributions of trace elements in the ocean. Here we present a synthesis about the state of the art for simulating selected trace elements in biogeochemical models: Protactinium, Thorium, Iron and Aluminium. In this contribution we pay particular attention on the role of particles in the cycling of thee tracers and how they may provide additional constraints on the transfer of matter in the ocean. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:66 / 72
页数:7
相关论文
共 50 条
  • [21] Global simulation of dissolved 231Pa and 230Th in the ocean and the sedimentary 231Pa/230Th ratios with the ocean general circulation model COCO ver4.0
    Sasaki, Yusuke
    Kobayashi, Hidetaka
    Oka, Akira
    GEOSCIENTIFIC MODEL DEVELOPMENT, 2022, 15 (05) : 2013 - 2033
  • [22] Evolution of 231Pa and 230Th in overflow waters of the North Atlantic
    Deng, Feifei
    Henderson, Gideon M.
    Castrillejo, Maxi
    Perez, Fiz F.
    Steinfeldt, Reiner
    BIOGEOSCIENCES, 2018, 15 (23) : 7299 - 7313
  • [23] New insights into cycling of 231Pa and 230Th in the Atlantic Ocean
    Rempfer, Johannes
    Stocker, Thomas F.
    Joos, Fortunat
    Lippold, Joerg
    Jaccard, Samuel L.
    EARTH AND PLANETARY SCIENCE LETTERS, 2017, 468 : 27 - 37
  • [24] 通过227Th测定骨化石的231Pa年代和231Pa/230Th年代
    原思训
    陈铁梅
    高世君
    地球化学, 1990, (03) : 216 - 224
  • [25] 231Pa and 230Th in the Arctic Ocean: Implications for boundary scavenging and 231Pa-230Th fractionation in the Eurasian Basin
    Gdaniec, Sandra
    Roy-Barman, Matthieu
    Levier, Martin
    Valk, Ole
    van der Loeff, Michiel Rutgers
    Foliot, Lorna
    Dapoigny, Arnaud
    Missiaen, Lise
    Morth, Carl-Magnus
    Andersson, Per S.
    CHEMICAL GEOLOGY, 2020, 532
  • [26] Isopycnal Transport and Scavenging of 230Th and 231Pa in the Pacific Southern Ocean
    Pavia, Frank J.
    Anderson, Robert F.
    Pinedo-Gonzalez, Paulina
    Fleisher, Martin Q.
    Brzezinski, Mark A.
    Robinson, Rebecca S.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2020, 34 (12)
  • [27] Seasonal and spatial controls of 230Th/231Pa ratios in the Arabian Sea
    Scholten, JC
    Fietzke, J
    Mangin, A
    Stoffers, P
    Ittekkot, V
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2002, 66 (15A) : A685 - A685
  • [28] On the potential of 230Th, 231Pa, and 10Be for marine rain ratio determinations:: A modeling study
    Heinze, C.
    Gehlen, M.
    Land, C.
    GLOBAL BIOGEOCHEMICAL CYCLES, 2006, 20 (02)
  • [29] Do particulate 231Pa/230Th ratios depend on water depth?
    Scholten, Jan C.
    Fietzke, J.
    GEOCHIMICA ET COSMOCHIMICA ACTA, 2007, 71 (15) : A903 - A903
  • [30] Intense hydrothermal scavenging of 230Th and 231Pa Pacific in the deep Southeast
    Pavia, Frank
    Anderson, Robert
    Vivancos, Sebastian
    Fleisher, Martin
    Lam, Phoebe
    Lu, Yanbin
    Cheng, Hai
    Zhang, Pu
    Edwards, R. Lawrence
    MARINE CHEMISTRY, 2018, 201 : 212 - 228