Kontsevich's formula and the WDVV equations in tropical geometry

被引:43
|
作者
Gathmann, Andreas [1 ]
Markwig, Hannah [1 ]
机构
[1] Tech Univ Kaiserslautern, Fachbereich Math, D-67653 Kaiserslautern, Germany
关键词
tropical geometry; enumerative geometry; Gromov-Witten theory;
D O I
10.1016/j.aim.2007.08.004
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using Gromov-Witten theory the numbers of complex plane rational curves of degree d through 3d - 1 general given points can be computed recursively with Kontsevich's formula that follows from the so-called WDVV equations. In this paper we establish the same results entirely in the language of tropical geometry. In particular this shows how the concepts of moduli spaces of stable curves and maps, (evaluation and forgetful) morphisms, intersection multiplicities and their invariance under deformations can be carried over to the tropical world. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:537 / 560
页数:24
相关论文
共 50 条
  • [1] Generalizing tropical Kontsevich's formula to multiple cross-ratios
    Goldner, Christoph
    ELECTRONIC JOURNAL OF COMBINATORICS, 2020, 27 (04): : 1 - 43
  • [2] On the Bi-Hamiltonian Geometry of WDVV Equations
    Pavlov, Maxim V.
    Vitolo, Raffaele F.
    LETTERS IN MATHEMATICAL PHYSICS, 2015, 105 (08) : 1135 - 1163
  • [3] On the Bi-Hamiltonian Geometry of WDVV Equations
    Maxim V. Pavlov
    Raffaele F. Vitolo
    Letters in Mathematical Physics, 2015, 105 : 1135 - 1163
  • [4] On geometry of a special class of solutions to generalized WDVV equations
    Veselov, AP
    INTEGRABILITY: THE SEIBERG-WITTEN AND WHITHAM EQUATIONS, 2000, : 125 - 135
  • [5] WDVV equations
    Magri, F.
    NUOVO CIMENTO C-COLLOQUIA AND COMMUNICATIONS IN PHYSICS, 2015, 38 (05):
  • [6] A Combinatorial Formula for Monomials in Kontsevich’s Ψ-Classes
    Gordon J.
    Panina G.
    Journal of Mathematical Sciences, 2020, 251 (3) : 349 - 353
  • [7] Symmetries of the WDVV Equations
    M. L. Geurts
    R. Martini
    G. F. Post
    Acta Applicandae Mathematica, 2002, 72 : 67 - 75
  • [8] Symmetries of the WDVV equations
    Geurts, ML
    Martini, R
    Post, GF
    ACTA APPLICANDAE MATHEMATICAE, 2002, 72 (1-2) : 67 - 75
  • [9] Kontsevich's universal formula for deformation quantization and the Campbell-Baker-Hausdorff formula
    Kathotia, V
    INTERNATIONAL JOURNAL OF MATHEMATICS, 2000, 11 (04) : 523 - 551
  • [10] Symmetries of WDVV equations
    Chen, YJ
    Kontsevich, M
    Schwarz, A
    NUCLEAR PHYSICS B, 2005, 730 (03) : 352 - 363