Utilisation of intramyocellular lipids (IMCLs) during exercise as assessed by proton magnetic resonance spectroscopy (1H-MRS)

被引:89
|
作者
Brechtel, K
Niess, AM
Machann, J
Rett, K
Schick, F
Claussen, CD
Dickhuth, HH
Haering, HU
Jacob, S
机构
[1] Univ Tubingen, Dept Endocrinol & Metab, D-72076 Tubingen, Germany
[2] Univ Tubingen, Dept Sports Med, D-72074 Tubingen, Germany
[3] Univ Tubingen, Dept Diagnost Radiol, D-72074 Tubingen, Germany
关键词
intramyocellular lipids; magnetic resonance spectroscopy; exercise; insulin sensitivity;
D O I
10.1055/s-2001-12407
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Recently, a H-1-MRS method became available to quantify intramyocellular lipids (IMCL) non-invasively. Currently, little is known about the regulation of this lipid pool. During prolonged exercise of moderate intensity, non-plasma-derived fatty acids play an important role as an energy source; lipids located within the skeletal muscle are considered to be a major source for these fatty acids. To see whether IMCL are reduced by exercise, 12 male runners were studied before and after exercising at different workloads and duration. Six subjects participated in a non-competitive run (NCR), three runners in a competitive half marathon (HM, 21 km) and another three in a competitive marathon (M, 42 km). Intra- and extramyocellular lipids were quantified by H-1-MR spectroscopy in the tibialis anterior (TA) and soleus (SOL) muscles prior to and after the exercise bout. Moderate intensity (MI; 60-70% VO2max in NCR) with a mean exercise time (MET) ranging between 105-110 min decreased IMCL by 10 - 36% in both muscles. Prolonged MI exercise (MET 210-240 min; 68 - 70 % VO2max in M) reduced IMCL by 42 - 57 % in TA and 27-56% in SOL, In contrast, high intensity exercise (HI; MET 80 - 120 min; 83 - 85 % VO2max in HM) did not alter IMCL in either muscle. Extramyocellular lipids (EMCL) did not show any significant change in any group. The data show that one bout of moderate-intensity (50-70% VO2max) aerobic exercise markedly reduces the ICL in TA and SOL muscles in a time-dependent fashion as assessed by H-1-MRS. However, exercise of similar duration but higher workload (> 80% VO2max) does not reduce IMCL. These data suggest that both exercise duration and workload are important factors in determining the reduction of IMCL.
引用
收藏
页码:63 / 66
页数:4
相关论文
共 50 条
  • [41] The use of proton magnetic resonance spectroscopy (1H-MRS) to measure lactate in the human ocular vitreous body in vivo
    Rucker, JC
    Biousse, V
    Mao, H
    Sandbach, JM
    Constantinidis, I
    Newman, NJ
    NEUROLOGY, 2002, 58 (07) : A438 - A438
  • [42] Newer insights in neurobiology of OCD using Magnetic Resonance Spectroscopy (1H-MRS)
    Hans, Gagan
    Sharan, Pratap
    Parmar, Arpit
    INDIAN JOURNAL OF PSYCHIATRY, 2018, 60 (05) : 34 - 34
  • [43] Proton magnetic resonance spectroscopy (1H-MRS) in immunocompetent patients with primary central nervous system lymphoma (PCNSL)
    Raizer, JJ
    Zakian, KL
    Abrey, LE
    Su, X
    Lis, E
    Koutcher, JA
    DeAngelis, LM
    NEUROLOGY, 1999, 52 (06) : A473 - A473
  • [44] Metabolite changes in rat drain during development as assessed by proton magnetic resonance spectroscopy (MRS)
    Najm, IM
    Wang, Y
    Comair, YG
    Ng, TC
    Luders, HO
    NEUROLOGY, 1997, 48 (03) : 1065 - 1065
  • [45] 1H-magnetic resonance spectroscopy (1H-MRS) in methamphetamine dependence and methamphetamine induced psychosis
    Howells, Fleur M.
    Uhlmann, Anne
    Temmingh, Henk
    Sinclair, Heidi
    Meintjes, Ernesta
    Wilson, Don
    Stein, Dan J.
    SCHIZOPHRENIA RESEARCH, 2014, 153 (1-3) : 122 - 128
  • [46] Gliomatosis cerebri:: Proton MR spectroscopy (1H-MRS) features
    Levin, N
    Linetsky, E
    Siegal, T
    NEUROLOGY, 2004, 62 (07) : A470 - A470
  • [47] Occipital Proton Magnetic Resonance Spectroscopy (1H-MRS) Reveals Normal Metabolite Concentrations in Retinal Visual Field Defects
    Boucard, Christine C.
    Hoogduin, Johannes M.
    van der Grond, Jeroen
    Cornelissen, Frans W.
    PLOS ONE, 2007, 2 (02):
  • [48] Proton magnetic resonance spectroscopy (1H-MRS) findings for the brain in patients with liver cirrhosis reflect the hepatic functional reserve
    Lee, JH
    Seo, DW
    Lee, YS
    Kim, ST
    Mun, CW
    Lim, TH
    Min, YI
    Suh, DJ
    AMERICAN JOURNAL OF GASTROENTEROLOGY, 1999, 94 (08): : 2206 - 2213
  • [49] Natural history of Canavan disease revealed by proton magnetic resonance spectroscopy (1H-MRS) and diffusion-weighted MRI
    Janson, C. G.
    McPhee, S. W. J.
    Francis, J.
    Shera, D.
    Assadi, M.
    Freese, A.
    Hurh, P.
    Haselgrove, J.
    Wang, D. J.
    Bilaniuk, L.
    Leone, P.
    NEUROPEDIATRICS, 2006, 37 (04) : 209 - 221
  • [50] Metabolite changes and gender differences in schizophrenia using 3-Tesla proton magnetic resonance spectroscopy (1H-MRS)
    Tayoshi, Shin'Ya
    Sumitani, Satsuki
    Taniguchi, Kyoko
    Shibuya-Tayoshi, Sumiko
    Numata, Shusuke
    Iga, Jun-ichi
    Nakataki, Masahito
    Ueno, Shu-ichi
    Harada, Masafumi
    Ohmori, Tetsuro
    SCHIZOPHRENIA RESEARCH, 2009, 108 (1-3) : 69 - 77