Live demonstration: CNN edge computing for mobile robot navigation

被引:0
|
作者
Pinero-Fuentes, Enrique [1 ]
Rios-Navarro, Antonio [1 ]
Tapiador-Morales, Ricardo [1 ]
Delbruck, Tobi [2 ,3 ]
Linares-Barranco, Alejandro [1 ]
机构
[1] Univ Seville, Robot & Technol Comp Lab, Seville, Spain
[2] Univ Zurich, Inst Neuroinformat, Zurich, Switzerland
[3] Swiss Fed Inst Technol, Zurich, Switzerland
关键词
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The brain cortex processes visual information to classify it following a scheme that has been mimicked by Convolutional Neural Networks (CNN). Specialised hardware accelerators are currently used as CPU co-processors for mobile applications. These accelerators are getting closer to the sensors for an edge computation of its output towards a faster and lower power consumption improvements. In this demonstration we use a dynamic vision sensor (inspired in the retina neural cells) as a visual source of the NullHop CNN accelerator deployed on a MPSoC FPGA and placed into a mobile robot for edge-computing the visual information and classify it to properly command a Summit-XL mobile robot for a target destiny. The reduced latency of the used CNN accelerator allows to process several histograms before taking a movement decision. A distance sensor mounted on the robot ensures that the direction change is done at the right distance for a proper path following.
引用
收藏
页数:1
相关论文
共 50 条
  • [41] Positioning and navigation of mobile robot
    Mokhtar, N.
    Sugisaka, M.
    Lung, L. T.
    Hamzah, A.
    Mubin, M.
    Shah, N. Md
    ARTIFICIAL LIFE AND ROBOTICS, 2008, 13 (01) : 255 - 258
  • [42] Intelligent Mobile Robot Navigation
    Omrane, Hajer
    Masmoudi, Mohamed Slim
    Masmoudi, Mohamed
    2017 INTERNATIONAL CONFERENCE ON SMART, MONITORED AND CONTROLLED CITIES (SM2C), 2017, : 27 - 31
  • [43] Navigation module for mobile robot
    Glębocki, Robert
    Kopyt, Antoni
    Kicman, Pawel
    Advances in Intelligent Systems and Computing, 2015, 351 : 87 - 93
  • [44] Oscillatory Neural Network for Edge Computing: A Mobile Robot Obstacle Avoidance Application
    Abernot, Madeleine
    Amara, Hamza
    Gil, Thierry
    Todri-Sanial, Aida
    2022 IEEE INTERNATIONAL CONFERENCE ON METROLOGY FOR EXTENDED REALITY, ARTIFICIAL INTELLIGENCE AND NEURAL ENGINEERING (METROXRAINE), 2022, : 181 - 186
  • [45] Soft-computing based navigation approach for a bi-steerable mobile robot
    Azouaoui, Ouahiba
    Ouada, Noureddine
    Mansour, Ibrahim
    Semani, Ali
    Aouana, Salim
    Chabi, Djafer
    KYBERNETES, 2013, 42 (1-2) : 241 - 267
  • [46] An edge-based text region extraction algorithm for indoor mobile robot navigation
    Liu, Xiaoqing
    Samarabandu, Jagath
    2005 IEEE INTERNATIONAL CONFERENCE ON MECHATRONICS AND AUTOMATIONS, VOLS 1-4, CONFERENCE PROCEEDINGS, 2005, : 701 - 706
  • [47] Experimental Demonstration of Self-Localized Ultra Wideband Indoor Mobile Robot Navigation System
    Segura, Marcelo
    Hashemi, Hossein
    Sisterna, Cristian
    Mut, Vicente
    2010 INTERNATIONAL CONFERENCE ON INDOOR POSITIONING AND INDOOR NAVIGATION, 2010,
  • [48] Enhancing lung cancer diagnosis with data fusion and mobile edge computing using DenseNet and CNN
    Zhang, Chengping
    Aamir, Muhammad
    Guan, Yurong
    Al-Razgan, Muna
    Awwad, Emad Mahrous
    Ullah, Rizwan
    Bhatti, Uzair Aslam
    Ghadi, Yazeed Yasin
    JOURNAL OF CLOUD COMPUTING-ADVANCES SYSTEMS AND APPLICATIONS, 2024, 13 (01):
  • [49] Comparison of Edge Computing Implementations: Fog Computing, Cloudlet and Mobile Edge Computing
    Dolui, Koustabh
    Datta, Soumya Kanti
    2017 GLOBAL INTERNET OF THINGS SUMMIT (GIOTS 2017), 2017, : 19 - 24
  • [50] Wheeled mobile robot navigation using proportional navigation
    Belkhouche, Fethi
    Belkhouche, Boumediene
    ADVANCED ROBOTICS, 2007, 21 (3-4) : 395 - 420