Non-Cartesian data reconstruction using GRAPPA operator gridding (GROG)

被引:95
|
作者
Seiberlich, Nicole
Breuer, Felix A.
Blaimer, Martin
Barkauskas, Kestutis
Jakob, Peter M.
Griswold, Mark A.
机构
[1] Univ Wurzburg, Inst Phys, Dept Expt Phys 5, EP 5, D-97074 Wurzburg, Germany
[2] Res Ctr Magnet Resonance Bavaria MRB, Wurzburg, Germany
[3] Univ Hosp Cleveland, Dept Radiol, Cleveland, OH 44106 USA
[4] Case Western Reserve Univ, Dept Biomed Engn, Cleveland, OH 44106 USA
关键词
parallel imaging; GRAPPA; gridding; non-Cartesian; image reconstruction;
D O I
10.1002/mrm.21435
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
A novel approach that uses the concepts of parallel imaging to grid data sampled along a non-Cartesian trajectory using GRAPPA operator gridding (GROG) is described. GROG shifts any acquired data point to its nearest Cartesian location, thereby converting non-Cartesian to Cartesian data. Unlike other parallel imaging methods, GROG synthesizes the net weight for a shift in any direction from a single basis set of weights along the logical k-space directions. Given the vastly reduced size of the basis set, GROG calibration and reconstruction requires fewer operations and less calibration data than other parallel imaging methods for gridding. Instead of calculating and applying a density compensation function (DCF), GROG requires only local averaging, as the reconstructed points fall upon the Cartesian grid. Simulations are performed to demonstrate that the root mean square error (RMSE) values of images gridded with GROG are similar to those for images gridded using the gold-standard convolution gridding. Finally, GROG is compared to the convolution gridding technique using data sampled along radial, spiral, rosette, and BLADE (a.k.a. periodically rotated overlapping parallel lines with enhanced reconstruction [PROPELLER]) trajectories.
引用
收藏
页码:1257 / 1265
页数:9
相关论文
共 50 条
  • [41] Quantification of left ventricular functional parameter values using 3D spiral bSSFP and through-time Non-Cartesian GRAPPA
    Kestutis J Barkauskas
    Prabhakar Rajiah
    Ravi Ashwath
    Jesse I Hamilton
    Yong Chen
    Dan Ma
    Katherine L Wright
    Vikas Gulani
    Mark A Griswold
    Nicole Seiberlich
    [J]. Journal of Cardiovascular Magnetic Resonance, 16
  • [42] A least squares quantization table method for direct reconstruction of MR images with non-Cartesian
    Liang, Dong
    Lam, Edmund Y.
    Fung, George S. K.
    [J]. JOURNAL OF MAGNETIC RESONANCE, 2007, 188 (01) : 141 - 150
  • [43] Variable-FOV Reconstruction for 3D Non-Cartesian Parallel Imaging
    Senel, Celal Furkan
    Cukur, Tolga
    [J]. 2017 21ST NATIONAL BIOMEDICAL ENGINEERING MEETING (BIYOMUT), 2017,
  • [44] Non-Cartesian MRI Reconstruction With Automatic Regularization Via Monte-Carlo SURE
    Ramani, Sathish
    Weller, Daniel S.
    Nielsen, Jon-Fredrik
    Fessler, Jeffrey A.
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2013, 32 (08) : 1411 - 1422
  • [45] k-Space-based coil combination via geometric deep learning for reconstruction of non-Cartesian MRSI data
    Motyka, Stanislav
    Hingerl, Lukas
    Strasser, Bernhard
    Hangel, Gilbert
    Heckova, Eva
    Agibetov, Asan
    Dorffner, Georg
    Gruber, Stephan
    Trattning, Siegfried
    Bogner, Wolfgang
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2021, 86 (05) : 2353 - 2367
  • [46] Optimization and validation of accelerated golden-angle radial sparse MRI reconstruction with self-calibrating GRAPPA operator gridding
    Benkert, Thomas
    Tian, Ye
    Huang, Chenchan
    DiBella, Edward V. R.
    Chandarana, Hersh
    Feng, Li
    [J]. MAGNETIC RESONANCE IN MEDICINE, 2018, 80 (01) : 286 - 293
  • [47] Rapid reconstruction of highly undersampled, non-Cartesian real-time cinek-space data using a perceptual complex neural network (PCNN)
    Shen, Daming
    Ghosh, Sushobhan
    Haji-Valizadeh, Hassan
    Pathrose, Ashitha
    Schiffers, Florian
    Lee, Daniel C.
    Freed, Benjamin H.
    Markl, Michael
    Cossairt, Oliver S.
    Katsaggelos, Aggelos K.
    Kim, Daniel
    [J]. NMR IN BIOMEDICINE, 2021, 34 (01)
  • [48] HYBRID LEARNING OF NON-CARTESIAN K-SPACE TRAJECTORY AND MR IMAGE RECONSTRUCTION NETWORKS
    Chaithya, G. R.
    Ramzi, Zaccharie
    Ciuciu, Philippe
    [J]. 2022 IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (IEEE ISBI 2022), 2022,
  • [49] Dual-domain self-supervised learning for accelerated non-Cartesian MRI reconstruction
    Zhou, Bo
    Schlemper, Jo
    Dey, Neel
    Salehi, Seyed Sadegh Mohseni
    Sheth, Kevin
    Liu, Chi
    Duncan, James S.
    Sofka, Michal
    [J]. MEDICAL IMAGE ANALYSIS, 2022, 81
  • [50] Texture frame curves and regions of attention using adaptive non-cartesian networks
    Alvarez, JRS
    Subirana-Vilanova, JB
    [J]. PATTERN RECOGNITION, 1999, 32 (03) : 503 - 515