Entanglement, information, and multiparticle quantum operations

被引:0
|
作者
Chefles, A [1 ]
Gilson, CR
Barnett, SM
机构
[1] Univ Hertfordshire, Dept Phys Sci, Hatfield AL10 9AB, Herts, England
[2] Univ Glasgow, Dept Math, Glasgow G12 8QQ, Lanark, Scotland
[3] Univ Strathclyde, Dept Phys & Appl Phys, Glasgow G4 0NG, Lanark, Scotland
[4] Japanese Minist Posts & Telecommun, Commun Res Lab, Tokyo, Japan
来源
PHYSICAL REVIEW A | 2001年 / 63卷 / 03期
关键词
D O I
暂无
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Collective operations on a network of spatially separated quantum systems can be carried out using local quantum operations, classical communication (CC), and shared entanglement (SE). Such operations can also be used to communicate classical information and establish entanglement between distant patties. We show how these facts lead to measures of the inseparability of quantum operations, and we argue that a maximally inseparable operation on two qubits is the SWAP operation. The generalization of our argument to N-qubit operations leads to the conclusion that permutation operations are maximally inseparable. For even N, we find the minimum SE and CC resources which are sufficient to perform an arbitrary collective operation. These minimum resources are 2(N-1) units of entanglement and 4(N-1) bits, and these limits can be attained using a simple teleportation-based protocol. We also obtain lower bounds on the minimum resources for the odd case. For all N greater than or equal to4, we show that the SE and CC resources required to perform an arbitrary operation are strictly greater than those that any operation can establish or communicate.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Properties of local quantum operations with shared entanglement
    Gutoski, Gus
    Quantum Information and Computation, 2009, 9 (9-10): : 0739 - 0764
  • [42] Optimal entanglement generation from quantum operations
    Leifer, MS
    Henderson, L
    Linden, N
    PHYSICAL REVIEW A, 2003, 67 (01):
  • [43] Hierarchy of quantum operations in manipulating coherence and entanglement
    Yamasaki, Hayata
    Vijayan, Madhav Krishnan
    Hsieh, Min-Hsiu
    QUANTUM, 2021, 5 : 1 - 19
  • [44] Multiparticle entanglement purification protocols
    Murao, M
    Plenio, MB
    Popescu, S
    Vedral, V
    Knight, PL
    PHYSICAL REVIEW A, 1998, 57 (06): : R4075 - R4078
  • [45] Accessible quantification of multiparticle entanglement
    Cianciaruso, Marco
    Bromley, Thomas R.
    Adesso, Gerardo
    NPJ QUANTUM INFORMATION, 2016, 2
  • [46] Faithful telecloning with multiparticle entanglement
    Gu, YJ
    Zheng, YZ
    Chen, LB
    Guo, GC
    CHINESE PHYSICS LETTERS, 2002, 19 (06) : 752 - 754
  • [47] Multiparticle entanglement purification protocols
    Murao, M.
    Plenio, M.B.
    Popescu, S.
    Vedral, V.
    Knight, P.L.
    Physical Review A. Atomic, Molecular, and Optical Physics, 1998, 57 (06):
  • [48] Potential multiparticle entanglement measure
    Wong, A
    Christensen, N
    PHYSICAL REVIEW A, 2001, 63 (04): : 1 - 4
  • [49] Global entanglement in multiparticle systems
    Meyer, DA
    Wallach, NR
    JOURNAL OF MATHEMATICAL PHYSICS, 2002, 43 (09) : 4273 - 4278
  • [50] Multiparticle entanglement as an emergent phenomenon
    Miklin, Nikolai
    Moroder, Tobias
    Guehne, Otfried
    PHYSICAL REVIEW A, 2016, 93 (02)