Mechanical, Electronic, and Optical Properties of β-B6O: First-Principles Calculations

被引:3
|
作者
Yang, Ruike [1 ]
Ma, Shaowei [1 ]
Wei, Qun [1 ]
Du, Zheng [2 ]
机构
[1] Xidian Univ, Sch Phys & Optoelect Engn, Xian 710071, Shaanxi, Peoples R China
[2] Natl Supercomp Ctr Shenzhen, Shenzhen 518055, Peoples R China
关键词
Boron Oxide; Electronic Properties; First-Principles; Calculations; Mechanical Properties; Optical Properties; GROUND-STATE; SUPERHARD; CONDUCTIVITY; PREDICTION; PHASES;
D O I
10.1515/zna-2017-0155
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The mechanical, electronic, and optical properties of beta-B6O are calculated by first-principles. The structural optimization and all properties are calculated by the method of generalized gradient approximation - Perdew, Burke and Ernzerhof (PBE). The hardness of beta-B6O is 39 GPa under a pressure of 0 GPa, which indicates that it belongs to a hard material. The band gap is indirect with a value of 1.836 eV, showing that beta-B6O is a semiconductor. The research of the electron localization function shows that the bonds of beta-B6O are covalent bonds, which can increase the stability of the compound. The phonon dispersion curves present the dynamical stability of beta-B6O under pressures of 0 and 50 GPa. The optical properties of beta-B6O are also calculated. In the energy range from 0 to 18 eV, beta-B6O presents high reflectivity; it has a strong absorption in the energy range from 3 to 18 eV. The refractive index results show that light propagates through the beta-B6O in a difficult manner in the energy range from 6.9 to 16.5 eV. In addition, the energy of the plasma frequency for beta-B6O is 16.6 eV and the peak value of the loss function is 13.6. These properties provide the basis for the development and application of beta-B6O.
引用
收藏
页码:805 / 810
页数:6
相关论文
共 50 条
  • [31] Structural, electronic, mechanical and elastic properties of Scandium Chalcogenides by first-principles calculations
    Abu-Jafar, Mohammed
    Dayton-Oxland, Rowan
    Jaradat, Raed
    Mousa, Ahmad A.
    Khenata, Rabah
    PHASE TRANSITIONS, 2020, 93 (08) : 773 - 783
  • [32] Mechanical and electronic properties of graphitic carbon nitride sheet: First-principles calculations
    Abdullahi, Yusuf Zuntu
    Yoon, Tiem Leong
    Halim, Mohd Mahadi
    Hashim, Md. Roslan
    Lim, Thong Leng
    SOLID STATE COMMUNICATIONS, 2016, 248 : 144 - 150
  • [33] The electronic, mechanical and lattice dynamic properties of TiSiY from first-principles calculations
    Tao, Xiaoma
    Chen, Chen
    Li, Shenling
    Ouyang, Yifang
    Du, Yong
    COMPUTATIONAL MATERIALS SCIENCE, 2012, 65 : 485 - 489
  • [34] Electronic structures, mechanical and thermodynamic properties of ThN from first-principles calculations
    Lu, Yong
    Li, Da-Fang
    Wang, Bao-Tian
    Li, Rong-Wu
    Zhang, Ping
    JOURNAL OF NUCLEAR MATERIALS, 2011, 408 (02) : 136 - 141
  • [35] Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations
    杨晓勇
    鲁勇
    郑法伟
    张平
    Chinese Physics B, 2015, 24 (11) : 356 - 361
  • [36] Mechanical, electronic, and thermodynamic properties of zirconium carbide from first-principles calculations
    Yang Xiao-Yong
    Lu Yong
    Zheng Fa-Wei
    Zhang Ping
    CHINESE PHYSICS B, 2015, 24 (11)
  • [37] First-principles study of electronic, mechanical and optical properties of mixed valence SmB6
    Xiao, Lihua
    Su, Yuchang
    Peng, Ping
    Tang, Dongsheng
    4TH INTERNATIONAL CONFERENCE ON ADVANCED COMPOSITE MATERIALS AND MANUFACTURING ENGINEERING 2017, 2017, 207
  • [38] The electronic, mechanical properties and theoretical hardness of chromium carbides by first-principles calculations
    Li, Yefei
    Gao, Yimin
    Xiao, Bing
    Min, Ting
    Yang, Ying
    Ma, Shengqiang
    Yi, Dawei
    JOURNAL OF ALLOYS AND COMPOUNDS, 2011, 509 (17) : 5242 - 5249
  • [39] First-principles calculations of electronic and mechanical properties of magnesium indium intermetallic compounds
    Sun, Liang
    Huang, Yidan
    Zhao, Kaifeng
    Chen, Zuoming
    Shang, Xiongtao
    Xu, Wenzhen
    Zhai, Wenyan
    Han, Pengyue
    Jia, Jin
    Peng, Jianhong
    COMPUTATIONAL CONDENSED MATTER, 2025, 43
  • [40] Electronic, mechanical, and optical properties of BP nanotubes: A first-principles study
    da Rocha, V. N.
    Cardoso, G. L.
    Piquini, P. C.
    Ahuja, R.
    COMPUTATIONAL CONDENSED MATTER, 2023, 34