The potential use of lapatinib-loaded human serum albumin nanoparticles in the treatment of triple-negative breast cancer

被引:46
|
作者
Wan, Xu [1 ]
Zheng, Xiaoyao [1 ]
Pang, Xiaoying [1 ]
Zhang, Zheming [1 ]
Jing, Tao [2 ]
Xu, Wei [2 ]
Zhang, Qizhi [1 ]
机构
[1] Fudan Univ, Sch Pharm, Dept Pharmaceut, Key Lab Smart Drug Delivery,Minist Educ, Shanghai 201203, Peoples R China
[2] Shanghai Zhangjiang Med Valley Publ Serv Platform, Shanghai 201203, Peoples R China
关键词
Lapatinib; HSA nanoparticle; Triple negative breast cancer; 4T1; cells; GROWTH-FACTOR RECEPTOR; ANTITUMOR-ACTIVITY; GLIOMA-CELLS; EXPRESSION; INHIBITOR; EGFR; PHENOTYPE; GW572016; MODEL;
D O I
10.1016/j.ijpharm.2015.02.037
中图分类号
R9 [药学];
学科分类号
1007 ;
摘要
Triple-negative breast cancer (TNBC) is an aggressive cancer with limited treatment options. However, the shared feature of epidermal growth factor receptor (EGFR) expression in TNBC offers the opportunity for targeted molecular therapy for this breast cancer subtype. Previous studies have indicated that lapatinib, a selective small-molecular dual-tyrosine kinase inhibitor of HER2 and EGFR, is effective in reducing cancer progression and metastasis, indicating that it might be a candidate for TNBC treatment. However, its poor water solubility, low and variable oral absorption, and large daily dose all limit the clinical use of lapatinib. In this study, we developed human serum albumin (HSA) nanoparticles loaded with lapatinib for intravenous administration to overcome these disadvantages and enhance its efficacy against TNBC. 4T1 cells (a murine TNBC cells) were selected as the cell model because their growth and metastatic spread are very close to those of human breast cancer cells. Lapatinib-loaded HSA nanoparticles (LHNPs) were prepared by Nab technology. LHNPs displayed cytotoxicity similar to the free drug but exhibited superior capacity to induce early apoptosis in 4T1 monolayer cells. Importantly, LHNPs showed improved penetration and inhibition effects in tumor spheroids compared to lapatinib solution (LS). Pharmacokinetic investigations revealed that HSA nanoparticles (i.v.) effectively increased the accumulation of lapatinib in tumor tissue at 2.38 and 16.6 times the level of LS (i.v.) and Tykerb (p.o.), respectively. Consequently, it had markedly better suppression effects both on primary breast cancer and lung metastasis in tumor-bearing mice compared to the commercial drug Tykerb. The improved antitumor efficacy of LHNPs may be partly attributed to its close binding to SPARC, which is widely present in the extracellular matrix of tumor tissue. These results demonstrated that LHNPs might be a promising anti-tumor agent for TNBC. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:16 / 28
页数:13
相关论文
共 50 条
  • [22] Functionalized biomimetic nanoparticles loaded with salvianolic acid B for synergistic targeted triple-negative breast cancer treatment
    Cheng, Nuo
    Zhou, Qianqian
    Jia, Zongfang
    Mu, Yang
    Zhang, Sheng
    Wang, Lei
    Chen, Yunna
    MATERIALS TODAY BIO, 2025, 30
  • [23] Postneoadjuvant treatment for triple-negative breast cancer
    Trapani, Dario
    Ferraro, Emanuela
    Giugliano, Federica
    Bielo, Luca Boscolo
    Curigliano, Giuseppe
    Burstein, Harold J.
    CURRENT OPINION IN ONCOLOGY, 2022, 34 (06) : 623 - 634
  • [24] Treatment Horizons for Triple-negative Breast Cancer
    Yeo, W.
    HONG KONG JOURNAL OF RADIOLOGY, 2015, 18 (02): : 111 - 118
  • [25] Human Serum Albumin-Oxaliplatin (Pt(IV)) prodrug nanoparticles with dual reduction sensitivity as effective nanomedicine for triple-negative breast cancer
    Paul, Milan
    Ghosh, Balaram
    Biswas, Swati
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 256
  • [26] Triple-negative breast cancer: is there a treatment on the horizon?
    Yao, Hui
    He, Guangchun
    Yan, Shichao
    Chen, Chao
    Song, Liujiang
    Rosol, Thomas J.
    Deng, Xiyun
    ONCOTARGET, 2017, 8 (01) : 1913 - 1924
  • [27] Atezolizumab for the treatment of triple-negative breast cancer
    Heimes, Anne-Sophie
    Schmidt, Marcus
    EXPERT OPINION ON INVESTIGATIONAL DRUGS, 2019, 28 (01) : 1 - 5
  • [28] Nanomedicine for the treatment of triple-negative breast cancer
    Kutty, Rajaletchumy Veloo
    Leong, David Tai Wei
    Feng, Si-Shen
    NANOMEDICINE, 2014, 9 (05) : 561 - 564
  • [29] Targeted Treatment of Triple-Negative Breast Cancer
    Young, Joanna A.
    Tan, Antoinette R.
    CANCER JOURNAL, 2021, 27 (01): : 50 - 58
  • [30] Local Treatment of Triple-Negative Breast Cancer
    Machiels, Melanie
    Kaidar-Person, Orit
    Rubio, Isabel T.
    Poortmans, Philip
    CANCER JOURNAL, 2021, 27 (01): : 32 - 40