Lipschitz continuity of Cheeger-harmonic functions in metric measure spaces

被引:40
|
作者
Koskela, P
Rajala, K
Shanmugalingam, N
机构
[1] Univ Cincinnati, Dept Math Sci, Cincinnati, OH 45221 USA
[2] Univ Jyvaskyla, Dept Math & Stat, FIN-40351 Jyvaskyla, Finland
关键词
Cheeger-harmonic; Lipschitz regularity; doubling measure; Poincare inequality; hypercontractivity; logarithmic Sobolev inequality; Newtonian space; heat kernel;
D O I
10.1016/S0022-1236(02)00090-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We use the heat equation to establish the Lipschitz continuity of Cheeger-harmonic functions in certain metric spaces. The metric spaces under consideration are those that are endowed with a doubling measure supporting a (1,2)-Poincare inequality and in addition supporting a corresponding Sobolev-Poincare-type inequality for the modification of the measure obtained via the heat kernel. Examples are given to illustrate the necessity of our assumptions on these spaces. We also provide an example to show that in the general setting the best possible regularity for the Cheeger-harmonic functions is Lipschitz continuity. (C) 2002 Elsevier Inc. All rights reserved.
引用
收藏
页码:147 / 173
页数:27
相关论文
共 50 条
  • [1] Cheeger-harmonic functions in metric measure spaces revisited
    Jiang, Renjin
    JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 266 (03) : 1373 - 1394
  • [2] Isoperimetric inequality via Lipschitz regularity of Cheeger-harmonic functions
    Jiang, Renjin
    Koskela, Pekka
    Yang, Dachun
    JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 101 (05): : 583 - 598
  • [3] Differentiability of Lipschitz functions on metric measure spaces
    Cheeger, J
    GEOMETRIC AND FUNCTIONAL ANALYSIS, 1999, 9 (03) : 428 - 517
  • [4] Differentiability of Lipschitz Functions on Metric Measure Spaces
    J. Cheeger
    Geometric & Functional Analysis GAFA, 1999, 9 : 428 - 517
  • [5] GRADIENT FLOWS FOR SEMICONVEX FUNCTIONS ON METRIC MEASURE SPACES - EXISTENCE, UNIQUENESS, AND LIPSCHITZ CONTINUITY
    Sturm, Karl-Theodor
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (09) : 3985 - 3994
  • [6] Harmonic functions on metric measure spaces
    Tomasz Adamowicz
    Michał Gaczkowski
    Przemysław Górka
    Revista Matemática Complutense, 2019, 32 : 141 - 186
  • [7] Harmonic functions on metric measure spaces
    Adamowicz, Tomasz
    Gaczkowski, Michal
    Gorka, Przemyslaw
    REVISTA MATEMATICA COMPLUTENSE, 2019, 32 (01): : 141 - 186
  • [8] Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces
    Jiang, Renjin
    POTENTIAL ANALYSIS, 2012, 37 (03) : 281 - 301
  • [9] Lipschitz Continuity of Solutions of Poisson Equations in Metric Measure Spaces
    Renjin Jiang
    Potential Analysis, 2012, 37 : 281 - 301
  • [10] The Cheeger cut and Cheeger problem in metric measure spaces
    Mazon, Jose M.
    NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2024, 31 (01):