Using Galois ideals for computing relative resolvents

被引:22
|
作者
Aubry, P [1 ]
Valibouze, A [1 ]
机构
[1] Univ Paris 06, LIP6, F-75252 Paris 05, France
关键词
D O I
10.1006/jsco.2000.0376
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
In this paper we show that some ideals which occur in Galois theory are generated by triangular sets of polynomials. This geometric property seems important for the development of symbolic methods in Galois theory. It may and should be exploited in order to obtain more efficient algorithms, and it enables us to present a new algebraic method for computing relative resolvents which works with any polynomial invariant. (C) 2000 Academic Press.
引用
收藏
页码:635 / 651
页数:17
相关论文
共 50 条
  • [41] Granular computing and dual Galois connection
    Ma, Jian-Min
    Zhang, Wen-Xiu
    Leung, Yee
    Song, Xiao-Xue
    INFORMATION SCIENCES, 2007, 177 (23) : 5365 - 5377
  • [42] RELATIVE GALOIS STRUCTURE FOR RINGS OF INTEGERS
    SODAIGUI, B
    JOURNAL OF NUMBER THEORY, 1988, 28 (02) : 189 - 204
  • [43] Algorithms for computing multiplier ideals
    Shibuta, Takafumi
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2011, 215 (12) : 2829 - 2842
  • [44] Relative Ideals in Ordered Semigroups
    Ali, Md Firoj
    Khan, Noor Mohammad
    Mahboob, Ahsan
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2020, 51 (04): : 1497 - 1514
  • [45] Relative Ideals in Ordered Semigroups
    Md. Firoj Ali
    Noor Mohammad Khan
    Ahsan Mahboob
    Indian Journal of Pure and Applied Mathematics, 2020, 51 : 1497 - 1514
  • [46] Computing the ideals of sumset semigroups
    Garcia-Garcia, J., I
    Marin-Aragon, D.
    Vigneron-Tenorio, A.
    ACM COMMUNICATIONS IN COMPUTER ALGEBRA, 2021, 55 (03): : 73 - 81
  • [47] RELATIVE NILPOTENCY OF LEFT IDEALS
    MUSHRUB, VA
    VESTNIK MOSKOVSKOGO UNIVERSITETA SERIYA 1 MATEMATIKA MEKHANIKA, 1992, (06): : 50 - 52
  • [48] Higher relative primitive ideals
    Jiang, GF
    Simis, A
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2001, 129 (03) : 647 - 655
  • [49] ON RELATIVE MAXIMAL IDEALS IN LATTICES
    KINUGAWA, S
    HASHIMOT.J
    PROCEEDINGS OF THE JAPAN ACADEMY, 1966, 42 (01): : 1 - &
  • [50] A parallel multi-modular algorithm for computing Lagrange resolvents
    Rennert, N
    JOURNAL OF SYMBOLIC COMPUTATION, 2004, 37 (05) : 547 - 556