Discrete breathers in lattices of coupled oscillators

被引:0
|
作者
Zheng, ZG [1 ]
机构
[1] Beijing Normal Univ, Dept Phys, Beijing 100875, Peoples R China
[2] Hong Kong Baptist Univ, Dept Phys, Hong Kong, Hong Kong, Peoples R China
[3] Hong Kong Baptist Univ, Ctr Nonlinear Studies, Hong Kong, Hong Kong, Peoples R China
关键词
discrete breather; rotator; discrete sine-Gordon chain; phase synchronization;
D O I
暂无
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Discrete breathers are generic solutions for the dynamics of nonlinearly coupled oscillators. We show that discrete breathers can be observed in low-dimensional and high-dimensional lattices by exploring the sinusoidally coupled pendulum. Loss of stability of the breather solution is studied. We also find the existence of discrete breather in lattices with parameter mismatches. Breather phase synchronization is exhibited for the coupled chaotic oscillators.
引用
收藏
页码:137 / 142
页数:6
相关论文
共 50 条
  • [31] Discrete breathers in an array of self-excited oscillators: Exact solutions and stability
    Shiroky, I. B.
    Gendelman, O. V.
    CHAOS, 2016, 26 (10)
  • [32] Analytic conditions for targeted energy transfer between nonlinear oscillators or discrete breathers
    Aubry, S
    Kopidakis, G
    Morgante, AM
    Tsironis, GP
    PHYSICA B, 2001, 296 (1-3): : 222 - 236
  • [33] Discrete breathers in Klein-Gordon lattices: A deflation-based approach
    Martin-Vergara, F.
    Cuevas-Maraver, J.
    Farrell, P. E.
    Villatoro, F. R.
    Kevrekidis, P. G.
    CHAOS, 2023, 33 (11)
  • [34] Synchronization in lattices of coupled oscillators with various boundary conditions
    Chiu, CH
    Lin, WW
    Wang, CS
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2001, 46 (02) : 213 - 229
  • [35] Spatiotemporal synchronization in lattices of locally coupled chaotic oscillators
    Belykh, VN
    Belykh, IV
    Nelvidin, KV
    MATHEMATICS AND COMPUTERS IN SIMULATION, 2002, 58 (4-6) : 477 - 492
  • [36] Discrete embedded solitary waves and breathers in one-dimensional nonlinear lattices
    Palmero, Faustino
    Molina, Mario, I
    Cuevas-Maraver, Jesus
    Kevrekidis, Panayotis G.
    PHYSICS LETTERS A, 2022, 425
  • [37] Lower and upper estimates on the excitation threshold for breathers in discrete nonlinear Schrodinger lattices
    Cuevas, J.
    Karachalios, N. I.
    Palmero, F.
    JOURNAL OF MATHEMATICAL PHYSICS, 2009, 50 (11)
  • [38] Stability of discrete breathers in diatomic Fermi-Pasta-Ulam type lattices
    Yoshimura, Kazuyuki
    IUTAM SYMPOSIUM ON 50 YEARS OF CHAOS: APPLIED AND THEORETICAL, 2012, 5 : 134 - 139
  • [39] Discrete Breathers
    Flach, S.
    Willis, C. R.
    Physics Reports, 295 (05):
  • [40] Discrete breathers
    Flach, S
    Willis, CR
    PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 1998, 295 (05): : 181 - 264