Integral springer theorem for quaternionic forms

被引:2
|
作者
Arenas-Carmona, Luis [1 ]
机构
[1] Univ Chile, Fac Ciencias, Santiago, Chile
关键词
D O I
10.1017/S0027763000025885
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
J.S. Hsia has conjectured an arithmetical version of Springer Theorem, which states that no two spinor genera in the same genus of integral quadratic forms become identified over an odd degree extension. In this paper we prove by examples that the corresponding result for quaternionic skew-hermitian forms does not hold in full generality. We prove that it does hold for unimodular skew-hermitian lattices under all extensions and for lattices whose discriminant is relatively prime to 2 under Galois extensions.
引用
收藏
页码:157 / 174
页数:18
相关论文
共 50 条
  • [31] Slant submanifolds of quaternionic space forms
    Vilcu, Gabriel Eduard
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 2012, 81 (3-4): : 397 - 413
  • [32] Biharmonic Submanifolds of Quaternionic Space Forms
    Kacimi, Bouazza
    Cherif, Ahmed Mohammed
    KYUNGPOOK MATHEMATICAL JOURNAL, 2019, 59 (04): : 771 - 781
  • [33] Some characterizations of quaternionic space forms
    Adachi, T
    Maeda, S
    PROCEEDINGS OF THE JAPAN ACADEMY SERIES A-MATHEMATICAL SCIENCES, 2000, 76 (10) : 168 - 172
  • [34] Complex forms of quaternionic symmetric spaces
    Wolf, JA
    COMPLEX, CONTACT AND SYMMETRIC MANIFOLDS: IN HONOR OF L. VANHECKE, 2005, 234 : 265 - 277
  • [35] QUATERNIONIC MODULAR FORMS OF ANY WEIGHT
    Brasca, Riccardo
    INTERNATIONAL JOURNAL OF NUMBER THEORY, 2014, 10 (01) : 31 - 53
  • [36] COMPLEX FORMS OF QUATERNIONIC LINEAR MAPS
    DJOKOVIC, DZ
    JOURNAL OF ALGEBRA, 1975, 37 (01) : 104 - 110
  • [37] IMPRIMITIVITY THEOREM AND QUATERNIONIC QUANTUM-MECHANICS
    TRUINI, P
    BIEDENHARN, LC
    CASSINELLI, G
    HADRONIC JOURNAL, 1981, 4 (03): : 981 - 994
  • [38] Quaternionic Gabor frame characterization and the density theorem
    Zhang, Xiao-Li
    Li, Yun-Zhang
    BANACH JOURNAL OF MATHEMATICAL ANALYSIS, 2023, 17 (04)
  • [39] Periodicity theorem for structure fractals in quaternionic formulation
    Lawrynowicz, Julian
    Marchiafava, Stefano
    Nowak-Kepczyk, Malgorzata
    INTERNATIONAL JOURNAL OF GEOMETRIC METHODS IN MODERN PHYSICS, 2006, 3 (5-6) : 1167 - 1197
  • [40] Spectral theorem for quaternionic compact normal operators
    Ramesh G.
    Santhosh Kumar P.
    The Journal of Analysis, 2017, 25 (1) : 65 - 81