Data-Driven Adaptive Nested Robust Optimization: General Modeling Framework and Efficient Computational Algorithm for Decision Making Under Uncertainty

被引:122
|
作者
Ning, Chao [1 ]
You, Fengqi [1 ]
机构
[1] Cornell Univ, Smith Sch Chem & Biomol Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
big data; data-driven adaptive robust optimization; Dirichlet process mixture model; column-and-constraint generation algorithm; process design and operations; OF-THE-ART; PROCESS SYSTEMS; MINLP MODELS; DESIGN; CHALLENGES; OPERATIONS; INFERENCE; BOUNDS;
D O I
10.1002/aic.15717
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A novel data-driven adaptive robust optimization framework that leverages big data in process industries is proposed. A Bayesian nonparametric model-the Dirichlet process mixture model-is adopted and combined with a variational inference algorithm to extract the information embedded within uncertainty data. Further a data-driven approach for defining uncertainty set is proposed. This machine-learning model is seamlessly integrated with adaptive robust optimization approach through a novel four-level optimization framework. This framework explicitly accounts for the correlation, asymmetry and multimode of uncertainty data, so it generates less conservative solutions. Additionally, the proposed framework is robust not only to parameter variations, but also to anomalous measurements. Because the resulting multi-level optimization problem cannot be solved directly by any off-the-shelf solvers, an efficient column-and-constraint generation algorithm is proposed to address the computational challenge. Two industrial applications on batch process scheduling and on process network planning are presented to demonstrate the advantages of the proposed modeling framework and effectiveness of the solution algorithm. (C) 2017 American Institute of Chemical Engineers
引用
收藏
页码:3790 / 3817
页数:28
相关论文
共 50 条
  • [21] Distributionally Robust Optimization Under Moment Uncertainty with Application to Data-Driven Problems
    Delage, Erick
    Ye, Yinyu
    OPERATIONS RESEARCH, 2010, 58 (03) : 595 - 612
  • [22] DATA-DRIVEN DECISIONS IN PROTOTYPING AND PRODUCT DEVELOPMENT: A FRAMEWORK FOR UNCERTAINTY AND DECISION-MAKING
    Ali, Hadi
    Lande, Micah
    PROCEEDINGS OF THE ASME INTERNATIONAL MECHANICAL ENGINEERING CONGRESS AND EXPOSITION, 2019, VOL 14, 2020,
  • [23] Data-Driven Robust Optimization for Steam Systems in Ethylene Plants under Uncertainty
    Zhao, Liang
    Zhong, Weimin
    Du, Wenli
    PROCESSES, 2019, 7 (10)
  • [24] Data-driven Wasserstein distributionally robust optimization for refinery planning under uncertainty
    Zhao, Jinmin
    Zhao, Liang
    He, Wangli
    IECON 2021 - 47TH ANNUAL CONFERENCE OF THE IEEE INDUSTRIAL ELECTRONICS SOCIETY, 2021,
  • [25] Optimizing Return on Investment in Biomass Conversion Networks under Uncertainty Using Data-Driven Adaptive Robust Optimization
    Nicoletti, Jack
    Ning, Chao
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT A, 2019, 46 : 67 - 72
  • [26] A Data-Driven Robust Optimization Approach to Operational Optimization of Industrial Steam Systems under Uncertainty
    Zhao, Liang
    Ning, Chao
    You, Fengqi
    29TH EUROPEAN SYMPOSIUM ON COMPUTER AIDED PROCESS ENGINEERING, PT B, 2019, 46 : 1399 - 1404
  • [27] Using Data-Driven Uncertainty Quantification to Support Decision Making
    Vollmer, Charlie
    Peterson, Matt
    Stracuzzi, David J.
    Chen, Maximillian G.
    STATISTICAL DATA SCIENCE, 2018, : 141 - 153
  • [28] DISTRIBUTIONALLY FAVORABLE OPTIMIZATION: A FRAMEWORK FOR DATA-DRIVEN DECISION-MAKING WITH ENDOGENOUS OUTLIERS
    Jiang, Nan
    Xie, Weijun
    SIAM JOURNAL ON OPTIMIZATION, 2024, 34 (01) : 419 - 458
  • [29] Machine learning-based data-driven robust optimization approach under uncertainty
    Zhang, Chenhan
    Wang, Zhenlei
    Wang, Xin
    JOURNAL OF PROCESS CONTROL, 2022, 115 : 1 - 11
  • [30] Data-driven distributionally robust optimization of shale gas supply chains under uncertainty
    Gao, Jiyao
    Ning, Chao
    You, Fengqi
    AICHE JOURNAL, 2019, 65 (03) : 947 - 963