Sparse Representations in Deep Learning for Noise-Robust Digit Classification

被引:0
|
作者
Ghifary, Muhammad [1 ]
Kleijn, W. Bastiaan [1 ]
Zhang, Mengjie [1 ]
机构
[1] Victoria Univ Wellington, Sch Engn & Comp Sci, Wellington, New Zealand
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Many sparse regularization methods for encouraging succinct hierarchical features of deep architectures have been proposed, but there is still a lack of studies that compare them. We present a comparison of several sparse regularization methods in deep learning with respect to the performance of a noisy digit classification task under varying size of training samples. We also propose a deep hybrid architecture built from a particular combination of sparse auto-encoders and Restricted Boltzmann Machines. The results show that the sparse architectures can produce better classification performance under noisy test samples than the dense architectures in most cases. In addition, the deep hybrid architectures can solve the digit classification task more effectively with a small size of training samples.
引用
收藏
页码:340 / 345
页数:6
相关论文
共 50 条
  • [31] Noise-robust Apple Disease Classification with Image Augmentation Methods
    Kim J.-Y.
    Kim T.-K.
    Cho H.-C.
    [J]. Transactions of the Korean Institute of Electrical Engineers, 2022, 71 (09): : 1302 - 1307
  • [32] Unsupervised noise-robust feature extraction for aerial image classification
    Ye Liang
    Shuai Lu
    Rui Weng
    ChengZhe Han
    Ming Liu
    [J]. Science China Technological Sciences, 2020, 63 : 1406 - 1415
  • [33] A noise-robust FFT-based spectrum for audio classification
    Chu, Wei
    Champagne, Benoit
    [J]. 2006 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, VOLS 1-13, 2006, : 5071 - 5074
  • [34] Unsupervised noise-robust feature extraction for aerial image classification
    Liang Ye
    Lu Shuai
    Weng Rui
    Han ChengZhe
    Liu Ming
    [J]. SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2020, 63 (08) : 1406 - 1415
  • [35] Noise-Robust Deep Spiking Neural Networks with Temporal Information
    Park, Seongsik
    Lee, Dongjin
    Yoon, Sungroh
    [J]. 2021 58TH ACM/IEEE DESIGN AUTOMATION CONFERENCE (DAC), 2021, : 373 - 378
  • [36] Deep Maxout Networks Applied to Noise-Robust Speech Recognition
    de-la-Calle-Silos, F.
    Gallardo-Antolin, A.
    Pelaez-Moreno, C.
    [J]. ADVANCES IN SPEECH AND LANGUAGE TECHNOLOGIES FOR IBERIAN LANGUAGES, IBERSPEECH 2014, 2014, 8854 : 109 - 118
  • [37] Noise-robust classification of single-shot electron spin readouts using a deep neural network
    Yuta Matsumoto
    Takafumi Fujita
    Arne Ludwig
    Andreas D. Wieck
    Kazunori Komatani
    Akira Oiwa
    [J]. npj Quantum Information, 7
  • [38] Deep maxout networks applied to noise-robust speech recognition
    [J]. de-la-Calle-Silos, F. (fsilos@tsc.uc3m.es), 1600, Springer Verlag (8854):
  • [39] Noise-robust classification of single-shot electron spin readouts using a deep neural network
    Matsumoto, Yuta
    Fujita, Takafumi
    Ludwig, Arne
    Wieck, Andreas D.
    Komatani, Kazunori
    Oiwa, Akira
    [J]. NPJ QUANTUM INFORMATION, 2021, 7 (01)
  • [40] A Fast and Noise-Robust Algorithm for Joint Sparse Recovery Through Information Transfer
    Yu, Nam Yul
    [J]. IEEE ACCESS, 2019, 7 : 37735 - 37748