Numerical analysis for stochastic age-dependent population equations with Poisson jump and phase semi-Markovian switching

被引:12
|
作者
Rathinasamy, A. [1 ]
Yin, Baojian [2 ]
Yasodha, B. [1 ]
机构
[1] PSG Coll Technol, Dept Math & Comp Applicat, Coimbatore 641004, Tamil Nadu, India
[2] Huazhong Univ Sci & Technol, Sch Math & Stat, Wuhan 430074, Peoples R China
基金
中国国家自然科学基金;
关键词
Numerical analysis; Semi-implicit Euler approximation; Stochastic age-dependent population equations; Poisson jump; Phase semi-Markovian switching; SEMIIMPLICIT EULER METHOD; CONVERGENCE;
D O I
10.1016/j.cnsns.2010.04.001
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we shall examine the convergence of semi-implicit Euler approximation for stochastic age-dependent population equations with Poisson jump and phase semi-Markovian switching. Here, the main ideas from the papers Ronghua et al. (2009) [2] and Wang and Wang (2010) [3] are successfully developed to the more general cases. Finally, a numerical example is provided to illustrate the theoretical result of convergence. (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:350 / 362
页数:13
相关论文
共 50 条
  • [11] Stochastic stability of Ito differential equations with semi-Markovian jump parameters
    Hou, Zhenting
    Luo, Jiaowan
    Shi, Peng
    Nguang, Sing Kiong
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2006, 51 (08) : 1383 - 1387
  • [12] Exponential stability of numerical solutions to stochastic age-dependent population equations with Poisson jumps
    Wei, Mao
    World Academy of Science, Engineering and Technology, 2011, 55 : 1103 - 1108
  • [13] Stabilisation of semi-Markovian jump stochastic systems via asynchronous switching control
    Liu, Jiamin
    Li, Zhao-Yan
    JOURNAL OF THE FRANKLIN INSTITUTE-ENGINEERING AND APPLIED MATHEMATICS, 2023, 360 (16): : 12640 - 12660
  • [14] Asymptotic behaviour analysis of stochastic functional differential equations with semi-Markovian switching signal
    Liu, Jiamin
    Li, Zhao-Yan
    INTERNATIONAL JOURNAL OF SYSTEMS SCIENCE, 2023, 54 (01) : 42 - 58
  • [15] Stochastic stability of semi-Markovian jump systems with mode-dependent delays
    Li, Fanbiao
    Wu, Ligang
    Shi, Peng
    INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, 2014, 24 (18) : 3317 - 3330
  • [16] Convergence of the semi-implicit Euler method for stochastic age-dependent population equations with Poisson jumps
    Wang, Lasheng
    Wang, Xiaojie
    APPLIED MATHEMATICAL MODELLING, 2010, 34 (08) : 2034 - 2043
  • [17] Numerical analysis for stochastic age-dependent population equations with fractional Brownian motion
    Ma, Wei-jun
    Zhang, Qi-min
    Han, Chong-zhao
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2012, 17 (04) : 1884 - 1893
  • [18] Convergence of numerical solutions to stochastic age-dependent population equations
    Li Ronghua
    Meng Hongbing
    Chang Qin
    JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2006, 193 (01) : 109 - 120
  • [19] The Model Analysis for Stochastic Age-Dependent Population with Poisson Jumps
    Wang Lasheng
    Sun Jie
    Huang Bin
    RECENT ADVANCE IN STATISTICS APPLICATION AND RELATED AREAS, PTS 1 AND 2, 2008, : 1605 - 1611
  • [20] Convergence of the split-step θ-method for stochastic age-dependent population equations with Markovian switching and variable delay
    Deng, Shounian
    Fei, Weiyin
    Liang, Yong
    Mao, Xuerong
    APPLIED NUMERICAL MATHEMATICS, 2019, 139 : 15 - 37