Forecasting and analysis of marketing data using neural networks

被引:0
|
作者
Yao, JT [1 ]
Teng, N [1 ]
Poh, HL [1 ]
Tan, CL [1 ]
机构
[1] Natl Univ Singapore, Sch Comp, Singapore 119260, Singapore
关键词
artificial neural networks; marketing decision support systems; sales forecasting; marketing mix; variable reduction;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This study aims to incorporate Artificial Neural Networks into a Marketing Decision Support System (MDSS), specifically, by discovering important variables that influence sales performance of colour television (CTV) sets in the Singapore market using neural networks. Three kinds of variables, expert knowledge, marketing information and environmental data, are examined. The information about the effects of each of these variables has been studied and made available for decision making. However, their combined effect is unknown. This study attempts to explore the combined effect for the benefit of our collaborator, a multinational corporation (MNC) in the consumer electronics industry in Singapore. Putting these three variables together as input variables results in a neural network model. Neural network training is conducted using historical data on CTV sales in Singapore collected over the past one and a half years. Sensitivity analysis is then performed to reduce input variables of neural networks. This is done by analyzing the weights of the input node connections in the trained neural networks using two different methods. The weaker variables can be excluded, and this results in a simpler model. Further, an R-Square value of almost 1 is obtained through the inclusion of an Unknown variable when the network model consisting only of the most influential variables is trained and tested. Knowing the most influential variables, which in this case include Average Price, Screen Size, Stereo Systems, Flat-Square screen type and Seasonal Factors, marketing managers can improve sales performance by paying more attention to them.
引用
收藏
页码:843 / 862
页数:20
相关论文
共 50 条
  • [31] Forecasting Stock Market Using Artificial Neural Networks: A Performance Analysis
    Inani, Sarveshwar Kumar
    Pradhan, Harsh
    Arora, Sonam
    Nagpal, Ankita
    Junior, Peterson Owusu
    2023 Global Conference on Information Technologies and Communications, GCITC 2023, 2023,
  • [32] Data preprocessing for river flow forecasting using neural networks: Wavelet transforms and data partitioning
    Cannas, Barbara
    Fanni, Alessandra
    See, Linda
    Sias, Giuliana
    PHYSICS AND CHEMISTRY OF THE EARTH, 2006, 31 (18) : 1164 - 1171
  • [33] Forecasting Climatic Trends Using Neural Networks: An Experimental Study Using Global Historical Data
    Ise, Takeshi
    Oba, Yurika
    FRONTIERS IN ROBOTICS AND AI, 2019, 6
  • [34] Functional data analysis using deep neural networks
    Wang, Shuoyang
    Zhang, Wanyu
    Cao, Guanqun
    Huang, Yuan
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2024, 16 (04):
  • [35] Exploratory Data Analysis using Artificial Neural Networks
    Sriram, D.
    Kalaivani, K.
    Ulagapriya, K.
    Saritha, A.
    Sajeevram, A.
    PROCEEDINGS OF 2020 IEEE INTERNATIONAL CONFERENCE ON ADVANCES AND DEVELOPMENTS IN ELECTRICAL AND ELECTRONICS ENGINEERING (ICADEE), 2020, : 186 - 195
  • [36] Disruption forecasting at JET using neural networks
    Cannas, B
    Fanni, A
    Marongiu, E
    Sonato, P
    NUCLEAR FUSION, 2004, 44 (01) : 68 - 76
  • [37] Option price forecasting using neural networks
    Yao, JT
    Li, YL
    Tan, CL
    OMEGA-INTERNATIONAL JOURNAL OF MANAGEMENT SCIENCE, 2000, 28 (04): : 455 - 466
  • [38] Intelligent Data Analysis using artificial neural networks
    Hsu, SY
    Zhu, W
    RESEARCH QUARTERLY FOR EXERCISE AND SPORT, 2002, 73 (01) : A38 - A39
  • [39] Air Quality Forecasting using Neural Networks
    Zhao, Chen
    van Heeswijk, Mark
    Karhunen, Juha
    PROCEEDINGS OF 2016 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (SSCI), 2016,
  • [40] Load Forecasting using Deep Neural Networks
    Hosein, Stefan
    Hosein, Patrick
    2017 IEEE POWER & ENERGY SOCIETY INNOVATIVE SMART GRID TECHNOLOGIES CONFERENCE (ISGT), 2017,