On-line identification of hybrid systems using an adaptive growing and pruning RBF neural network

被引:0
|
作者
Alizadeh, Tohid [1 ]
Salahshoor, Karim [1 ]
Jafari, Mohammad Reza [1 ]
Alizadeh, Abdollah [2 ]
Gholami, Mehdi [1 ]
机构
[1] Petr Univ Technol, Automat & Instrumentat Dept, PO Box 1455845168, Tehran, Iran
[2] Univ Tabriz, Bonab Fac Engn, Tabriz, Iran
关键词
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper introduces an adaptive growing and pruning radial basis function (GAP-RBF) neural network for on-line identification of hybrid systems. The main idea is to identify a global nonlinear model that can predict the continuous outputs of hybrid systems. In the proposed approach, GAP-RBF neural network uses a modified unscented kalman filter (UKF) with forgetting factor scheme as the required on-line learning algorithm. The effectiveness of the resulting identification approach is tested and evaluated on a simulated benchmark hybrid system.
引用
收藏
页码:257 / +
页数:2
相关论文
共 50 条
  • [21] RBF Fuzzy-Artmap: A new fuzzy neural network for robust on-line learning and identification of patterns
    Tontini, G
    deQueiroz, AA
    [J]. INFORMATION INTELLIGENCE AND SYSTEMS, VOLS 1-4, 1996, : 1364 - 1369
  • [22] Single neuron PID control of AGV steering system based on RBF neural network on-line identification
    Jiao, Jun
    Chen, Wuwei
    Wang, Jixian
    Li, Shaowen
    Cui, Huailei
    Wang, Tanbin
    [J]. Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2008, 29 (07): : 1431 - 1435
  • [23] Adaptive PID control based on RBF neural network identification
    Zhang, MG
    Wang, XG
    Liu, MQ
    [J]. ICTAI 2005: 17TH IEEE INTERNATIONAL CONFERENCE ON TOOLS WITH ARTIFICIAL INTELLIGENCE, PROCEEDINGS, 2005, : 681 - 683
  • [24] Comparison of MLP and RBF neural networks using deviation signals for on-line identification of a synchronous generator
    Park, JW
    Harley, RG
    Venayagamoorthy, GK
    [J]. 2002 IEEE POWER ENGINEERING SOCIETY WINTER MEETING, VOLS 1 AND 2, CONFERENCE PROCEEDINGS, 2002, : 274 - 279
  • [25] A Growing Algorithm for RBF Neural Network
    Han Honggui
    Qiao Junfei
    [J]. ADVANCES IN COMPUTATIONAL INTELLIGENCE, 2009, 61 : 73 - 82
  • [26] RBF Network Pruning Techniques for Adaptive Learning Controllers
    Gale, Serge
    Vestheim, Siri
    Gravdahl, Jan Tommy
    Fjerdingen, Sigurd
    Schjolberg, Ingrid
    [J]. 2013 9TH INTERNATIONAL WORKSHOP ON ROBOT MOTION AND CONTROL (ROMOCO), 2013, : 246 - 251
  • [27] On-line fuzzy adaptive controller with wavelet neural network
    Zhang, K
    Chen, WK
    [J]. 2001 INTERNATIONAL CONFERENCES ON INFO-TECH AND INFO-NET PROCEEDINGS, CONFERENCE A-G: INFO-TECH & INFO-NET: A KEY TO BETTER LIFE, 2001, : D394 - D399
  • [28] Identification and control of anaerobic digesters using adaptive, on-line trained neural networks
    Emmanouilides, C
    Petrou, L
    [J]. COMPUTERS & CHEMICAL ENGINEERING, 1997, 21 (01) : 113 - 143
  • [29] Identification and control of anaerobic digesters using adaptive, on-line trained neural networks
    Emmanouilides, C.
    Petrou, L.
    [J]. Computers and Chemical Engineering, 1996, 21 (01): : 113 - 143
  • [30] An on-line adaptive and neural network control of underwater vehicles
    Kim, MH
    Inman, DJ
    [J]. MOBILE ROBOTS XIV, 1999, 3838 : 264 - 274