共 50 条
Computational difficulty of finding matrix product ground states
被引:41
|作者:
Schuch, Norbert
[1
]
Cirac, Ignacio
[1
]
Verstraete, Frank
[2
]
机构:
[1] Max Planck Inst Quantum Opt, D-85748 Garching, Germany
[2] Univ Vienna, Fak Phys, A-1090 Vienna, Austria
关键词:
D O I:
10.1103/PhysRevLett.100.250501
中图分类号:
O4 [物理学];
学科分类号:
0702 ;
摘要:
We determine the computational difficulty of finding ground states of one-dimensional (1D) Hamiltonians, which are known to be matrix product states (MPS). To this end, we construct a class of 1D frustration-free Hamiltonians with unique MPS ground states and a polynomial gap above, for which finding the ground state is at least as hard as factoring. Without the uniqueness of the ground state, the problem becomes NP complete, and thus for these Hamiltonians it cannot even be certified that the ground state has been found. This poses new bounds on convergence proofs for variational methods that use MPS.
引用
收藏
页数:4
相关论文