Phase crossover in transition metal dichalcogenide nanoclusters

被引:8
|
作者
Zan, Wenyan [1 ,2 ]
Hu, Zhili [2 ]
Zhang, Zhuhua [2 ]
Yakobson, Boris I. [2 ,3 ,4 ]
机构
[1] Lanzhou Univ, Dept Chem, State Key Lab Appl Organ Chem, Lanzhou 730000, Peoples R China
[2] Rice Univ, Dept Mat Sci & NanoEngn, Houston, TX 77005 USA
[3] Rice Univ, Dept Chem, Houston, TX 77005 USA
[4] Rice Univ, Smalley Inst Nanoscale Sci & Technol, Houston, TX 77005 USA
关键词
SINGLE-LAYER MOS2; ACTIVE EDGE SITES; HYDROGEN EVOLUTION REACTION; MOLYBDENUM-DISULFIDE; ELECTRONIC-PROPERTIES; MAGNETIC-PROPERTIES; GRAIN-BOUNDARIES; MONOLAYER MOS2; NANOSHEETS; NANOPARTICLES;
D O I
10.1039/c6nr06194j
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
We perform comprehensive first-principles analyses on the stability of MX2 nanoclusters. The MX2 (M = Mo, W; X = S) clusters thermodynamically show a high level of phase variability, i.e. varying from the H phase, which is the ground state of two-dimensional MX2, to the T phase with the decreasing cluster size or chemical potential of X. In addition, the lower chemical potential of X endows the clusters with a stronger propensity of shaping in hexagons, instead of commonly observed triangles, consistent with recent experiments. Based on numerical analyses, we further express the energy of different types of clusters in terms of chemical potential and cluster size, and map out a structural phase diagram. These findings call for a revisit of the lattice structures of MX2 clusters and may also rationalize the frequent observation of meta-stable T domains embedded in otherwise perfect H-MX2 monolayers.
引用
收藏
页码:19154 / 19160
页数:7
相关论文
共 50 条
  • [21] Exchange intervalley scattering and magnetic phase diagram of transition metal dichalcogenide monolayers
    Miserev, Dmitry
    Klinovaja, Jelena
    Loss, Daniel
    PHYSICAL REVIEW B, 2019, 100 (01)
  • [22] Signatures of exciton condensation in a transition metal dichalcogenide
    Kogar, Anshul
    Rak, Melinda S.
    Vig, Sean
    Husain, Ali A.
    Flicker, Felix
    Il Joe, Young
    Venema, Luc
    MacDougall, Greg J.
    Chiang, Tai C.
    Fradkin, Eduardo
    van Wezel, Jasper
    Abbamonte, Peter
    SCIENCE, 2017, 358 (6368) : 1315 - +
  • [23] Room temperature multiferroicity in a transition metal dichalcogenide
    G. Cardenas-Chirivi
    K. Vega-Bustos
    H. Rojas-Páez
    D. Silvera-Vega
    J. Pazos
    O. Herrera
    M. A. Macías
    C. Espejo
    W. López-Pérez
    J. A. Galvis
    P. Giraldo-Gallo
    npj 2D Materials and Applications, 7
  • [24] Nonlinear Transition-Metal-Dichalcogenide Metasurfaces
    Nauman, Mudassar
    Yan, Jingshi
    Rahmani, Mohsen
    de Ceglia, Domenico
    De Angelis, Costantino
    Ma, Wendi
    Kamali, Khosro Zangeneh
    Miroshnichenko, Andrey E.
    Lu, Yuerui
    Neshev, Dragomir N.
    2020 CONFERENCE ON LASERS AND ELECTRO-OPTICS PACIFIC RIM (CLEO-PR), 2020,
  • [25] Twistronics of Janus transition metal dichalcogenide bilayers
    Angeli, Mattia
    Schleder, Gabriel R.
    Kaxiras, Efthimios
    PHYSICAL REVIEW B, 2022, 106 (23)
  • [26] Coulomb Center in a Transition Metal Dichalcogenide Monolayer
    Mahmoodian, M. M.
    Chaplik, A., V
    JETP LETTERS, 2021, 114 (09) : 545 - 550
  • [27] Thermal properties of transition-metal dichalcogenide
    刘向军
    张永伟
    Chinese Physics B, 2018, 27 (03) : 16 - 23
  • [28] Band alignment of transition metal dichalcogenide heterostructures
    Davies, Francis H.
    Price, Conor J.
    Taylor, Ned T.
    Davies, Shane G.
    Hepplestone, Steven P.
    PHYSICAL REVIEW B, 2021, 103 (04)
  • [29] Quasiparticle description of transition metal dichalcogenide nanoribbons
    da Cunha, Wiliam Ferreira
    de Oliveira Neto, Pedro Henrique
    Ribeiro Junior, Luiz Antonio
    Magela e Silva, Geraldo
    PHYSICAL REVIEW B, 2019, 99 (03)
  • [30] Environmental engineering of transition metal dichalcogenide optoelectronics
    LaMountain, Trevor
    Lenferink, Erik J.
    Chen, Yen-Jung
    Stanev, Teodor K.
    Stern, Nathaniel P.
    FRONTIERS OF PHYSICS, 2018, 13 (04)