Estimating body animation parameters from depth images using analysis by synthesis

被引:1
|
作者
Grammalidis, N [1 ]
Goussis, G [1 ]
Troufakos, G [1 ]
Strintzis, MG [1 ]
机构
[1] Univ Thessaloniki, Dept Elect & Comp Engn, GR-54006 Salonika, Greece
关键词
D O I
10.1109/DCV.2001.929947
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We present a general method to estimate MPEG-4 Body Animation Parameters (BAPs) from depth images by using an analysis-by-synthesis technique. A generic body model is first adapted to the geometry of the specific person. Then, the mean square error between the synthetic depth image, produced by model rendering, and the original depth image is minimized using the Downhill Simplex minimization method. Using this depth reconstruction error norm is seen to yield improved results, when compared to two alternative choices for the error norms, which were also evaluated. Results are presented for the specific application, where six animation parameters of the arm and the palm are estimated. In this case, an initial estimate is obtained by applying an Expectation-Maximization (EM) algorithm, which identifies three arm parts and two joint positions (elbow, wrist). This information is also used for reducing the search space and for automatic scale adaptation of each body part.
引用
收藏
页码:93 / 100
页数:8
相关论文
共 50 条
  • [21] Skeleton-free body pose estimation from depth images for movement analysis
    Crabbe, Ben
    Paiement, Adeline
    Hannuna, Sion
    Mirmehdi, Majid
    2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOP (ICCVW), 2015, : 312 - 320
  • [22] A combined approach for estimating patchlets from PMD depth images and stereo intensity images
    Beder, Christian
    Bartczak, Bogumil
    Koch, Reinhard
    PATTERN RECOGNITION, PROCEEDINGS, 2007, 4713 : 11 - +
  • [23] Body Pose Estimation in Depth Images for Infant Motion Analysis
    Hesse, Nikolas
    Schroeder, A. Sebastian
    Mueller-Felber, Wolfgang
    Bodensteiner, Christoph
    Arens, Michael
    Hofmann, Ulrich G.
    2017 39TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY (EMBC), 2017, : 1909 - 1912
  • [24] Estimating backfat depth, loin depth, and intramuscular fat percentage from ultrasound images in swine
    Peppmeier, Z. C.
    Howard, J. T.
    Knauer, M. T.
    Leonard, S. M.
    ANIMAL, 2023, 17 (10)
  • [25] Estimating depth from RGB images using deep-learning for robotic applications in apple orchards
    Divyanth, L. G.
    Rathore, Divya
    Senthilkumar, Piranav
    Patidar, Prakhar
    Zhang, Xin
    Karkee, Manoj
    Machavaram, Rajendra
    Soni, Peeyush
    SMART AGRICULTURAL TECHNOLOGY, 2023, 6
  • [26] Synthesis of CT images from digital body phantoms using CycleGAN
    Tom Russ
    Stephan Goerttler
    Alena-Kathrin Schnurr
    Dominik F. Bauer
    Sepideh Hatamikia
    Lothar R. Schad
    Frank G. Zöllner
    Khanlian Chung
    International Journal of Computer Assisted Radiology and Surgery, 2019, 14 : 1741 - 1750
  • [27] Synthesis of CT images from digital body phantoms using CycleGAN
    Russ, Tom
    Goerttler, Stephan
    Schnurr, Alena-Kathrin
    Bauer, Dominik F.
    Hatamikia, Sepideh
    Schad, Lothar R.
    Zoellner, Frank G.
    Chung, Khanlian
    INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2019, 14 (10) : 1741 - 1750
  • [28] Estimating body weight in conventional growing pigs using a depth camera
    Franchi, Guilherme A.
    Bus, Jacinta D.
    Boumans, Iris J. M. M.
    Bokkers, Eddie A. M.
    Jensen, Margit Bak
    Pedersen, Lene Juul
    SMART AGRICULTURAL TECHNOLOGY, 2023, 3
  • [29] Stereographic Animation - The Synthesis of Stereoscopic Depth From Flat Drawings and Art Work
    McLaren, Norman
    JOURNAL OF THE SOCIETY OF MOTION PICTURE & TELEVISION ENGINEERS, 1951, 57 (06): : 513 - 520
  • [30] THE HYPERVIEW CHALLENGE: ESTIMATING SOIL PARAMETERS FROM HYPERSPECTRAL IMAGES
    Nalepa, Jakub
    Le Saux, Bertrand
    Longepe, Nicolas
    Tulczyjew, Lukasz
    Myller, Michal
    Kawulok, Michal
    Smykala, Krzysztof
    Gumiela, Michal
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 4268 - 4272