Stretching fields and mixing near the transition to nonperiodic two-dimensional flow

被引:13
|
作者
Twardos, M. J. [1 ,2 ]
Arratia, P. E. [3 ,4 ]
Rivera, M. K. [1 ,2 ]
Voth, G. A. [5 ]
Gollub, J. P. [4 ]
Ecke, R. E. [1 ,2 ]
机构
[1] Los Alamos Natl Lab, Condensed Matter & Thermal Phys Grp, Los Alamos, NM 87545 USA
[2] Los Alamos Natl Lab, Ctr Nonlinear Studies, Los Alamos, NM 87545 USA
[3] Univ Penn, Dept Mech Engn, Philadelphia, PA 19104 USA
[4] Haverford Coll, Dept Phys, Haverford, PA 19041 USA
[5] Wesleyan Univ, Dept Phys, Middletown, CT 06459 USA
来源
PHYSICAL REVIEW E | 2008年 / 77卷 / 05期
关键词
D O I
10.1103/PhysRevE.77.056315
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
Although time-periodic fluid flows sometimes produce mixing via Lagrangian chaos, the additional contribution to mixing caused by nonperiodicity has not been quantified experimentally. Here, we do so for a quasi-two-dimensional flow generated by electromagnetic forcing. Several distinct measures of mixing are found to vary continuously with the Reynolds number, with no evident change in magnitude or slope at the onset of nonperiodicity. Furthermore, the scaled probability distributions of the mean Lyapunov exponent have the same form in the periodic and nonperiodic flow states.
引用
下载
收藏
页数:4
相关论文
共 50 条
  • [21] Aerodynamic forces and flow fields of a two-dimensional hovering wing
    K. B. Lua
    T. T. Lim
    K. S. Yeo
    Experiments in Fluids, 2008, 45 : 1047 - 1065
  • [22] Hydraulics of one- and two-dimensional flow fields in aquifers
    Kabala, ZJ
    Thorne, B
    HYDROLOGICAL SCIENCES JOURNAL-JOURNAL DES SCIENCES HYDROLOGIQUES, 1997, 42 (01): : 1 - 14
  • [23] Aerodynamic forces and flow fields of a two-dimensional hovering wing
    Lua, K. B.
    Lim, T. T.
    Yeo, K. S.
    EXPERIMENTS IN FLUIDS, 2008, 45 (06) : 1047 - 1065
  • [24] Aerodynamic forces and flow fields of a two-dimensional hovering wing
    K. B. Lua
    T. T. Lim
    K. S. Yeo
    Experiments in Fluids, 2008, 45 (6) : 1067 - 1071
  • [25] Hydraulics of one- and two-dimensional flow fields in aquifers
    Kabala, Z.J.
    Thorne, B.
    Hydrological Sciences Journal, 1997, 42 (01) : 1 - 14
  • [26] Two-dimensional agitated flow fields of highly viscous fluids
    Chen, Mei
    Fan, Xijun
    Dou, Mei
    Wu, Jia
    Huagong Xuebao/Journal of Chemical Industry and Engineering (China), 1994, 45 (01): : 10 - 16
  • [27] Two-dimensional Bragg resonator with nonperiodic radial perturbation of parameters
    Borulko, VF
    Ivanilov, VE
    MSMW'98 - SYMPOSIUM PROCEEDINGS, VOLS 1 AND 2, 1998, : 641 - 643
  • [28] Three-Dimensional Trajectories of Spheroidal Particles in Two-Dimensional Flow Fields
    Ruggio, Raffaele
    Paparella, Francesco
    ACTA APPLICANDAE MATHEMATICAE, 2012, 122 (01) : 395 - 406
  • [29] Three-Dimensional Trajectories of Spheroidal Particles in Two-Dimensional Flow Fields
    Raffaele Ruggio
    Francesco Paparella
    Acta Applicandae Mathematicae, 2012, 122 : 395 - 406
  • [30] Reconstruction of three-dimensional flow fields from two-dimensional data
    Miguel Perez, Jose
    Le Clainche, Soledad
    Manuel Vega, Jose
    JOURNAL OF COMPUTATIONAL PHYSICS, 2020, 407