On the least square-free primitive root modulo p

被引:10
|
作者
Cohen, Stephen D. [1 ]
Trudgian, Tim [2 ]
机构
[1] Univ Glasgow, Sch Math & Stat, Glasgow G12 8QQ, Lanark, Scotland
[2] Australian Natl Univ, Inst Math Sci, Canberra, ACT 0200, Australia
基金
澳大利亚研究理事会;
关键词
Character sums; Primitive roots; Square-free integers;
D O I
10.1016/j.jnt.2016.06.011
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let g(square) (p) denote the least square-free primitive root modulo p. We show that g(square)(p) < p(0.96) for all p. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:10 / 16
页数:7
相关论文
共 50 条
  • [31] ON SQUARE-FREE DIVISORS
    CIOIA, AA
    VAIDYA, AM
    [J]. TEXAS JOURNAL OF SCIENCE, 1964, 16 (04): : 454 - &
  • [32] On Square-Free Numbers
    Grabowski, Adam
    [J]. FORMALIZED MATHEMATICS, 2013, 21 (02): : 153 - 162
  • [33] ON SQUARE-FREE DIVISORS
    GIOIA, AA
    VAIDYA, AM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1965, 72 (04): : 454 - &
  • [34] SQUARE-FREE INTEGERS
    CHOWLA, S
    SMITH, RA
    VAIDYA, AM
    [J]. AMERICAN MATHEMATICAL MONTHLY, 1964, 71 (06): : 686 - &
  • [35] Square-free values of f(p), f cubic
    Helfgott, Harald Andres
    [J]. ACTA MATHEMATICA, 2014, 213 (01) : 107 - 135
  • [36] Some results in square-free and strong square-free edge-colorings of graphs
    Sudeep, K. S.
    Vishwanathan, Sundar
    [J]. DISCRETE MATHEMATICS, 2007, 307 (14) : 1818 - 1824
  • [37] Rich square-free words
    Vesti, Jetro
    [J]. THEORETICAL COMPUTER SCIENCE, 2017, 687 : 48 - 61
  • [38] ON THE PRODUCT OF SQUARE-FREE WORDS
    DELUCA, A
    [J]. DISCRETE MATHEMATICS, 1984, 52 (2-3) : 143 - 157
  • [39] Square-free partial words
    Halava, Vesa
    Harju, Tero
    Karki, Tomi
    [J]. INFORMATION PROCESSING LETTERS, 2008, 108 (05) : 290 - 292
  • [40] DISTRIBUTION OF SQUARE-FREE NUMBERS
    HOOLEY, C
    [J]. CANADIAN JOURNAL OF MATHEMATICS-JOURNAL CANADIEN DE MATHEMATIQUES, 1973, 25 (06): : 1216 - 1223