Analysis on ψ-Hilfer Fractional Impulsive Differential Equations

被引:11
|
作者
Karthikeyan, Kulandhaivel [1 ]
Karthikeyan, Panjaiyan [2 ]
Chalishajar, Dimplekumar N. [3 ]
Raja, Duraisamy Senthil [4 ]
Sundararajan, Ponnusamy [5 ]
机构
[1] KPR Inst Engn & Technol, Dept Math, Coimbatore 641407, Tamil Nadu, India
[2] Sri Vasavi Coll, Dept Math, Erode 638316, Tamil Nadu, India
[3] Virginia Mil Inst, Dept Appl Math, 435 Mallory Hall, Lexington, VA 24450 USA
[4] KS Rangasamy Coll Technol, Dept Math, Tiruchengode 637215, Tamil Nadu, India
[5] Arinagar Anna Govt Arts Coll, Dept Math, Namakkal 637002, Tamil Nadu, India
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 10期
关键词
psi-Hilfer fractional derivative; mild solutions; impulsive conditions; almost sectorial operators; measure of noncompactness;
D O I
10.3390/sym13101895
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this manuscript, we establish the existence of results of fractional impulsive differential equations involving psi-Hilfer fractional derivative and almost sectorial operators using Schauder fixed-point theorem. We discuss two cases, if the associated semigroup is compact and noncompact, respectively. We consider here the higher-dimensional system of integral equations. We present herewith new theoretical results, structural investigations, and new models and approaches. Some special cases of the results are discussed as well. Due to the nature of measurement of noncompactness theory, there exists a strong relationship between the sectorial operator and symmetry. When working on either of the concepts, it can be applied to the other one as well. Finally, a case study is presented to demonstrate the major theory.
引用
收藏
页数:10
相关论文
共 50 条
  • [31] On a New Class of Impulsive η-Hilfer Fractional Volterra-Fredholm Integro-Differential Equations
    Ismaael, F. M.
    MALAYSIAN JOURNAL OF MATHEMATICAL SCIENCES, 2023, 17 (04): : 691 - 704
  • [32] Approximate controllability of Hilfer fractional differential equations
    Lv, Jingyun
    Yang, Xiaoyuan
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (01) : 242 - 254
  • [33] A Study on Impulsive Hilfer Fractional Evolution Equations with Nonlocal Conditions
    Gou, Haide
    Li, Yongxiang
    INTERNATIONAL JOURNAL OF NONLINEAR SCIENCES AND NUMERICAL SIMULATION, 2020, 21 (02) : 205 - 218
  • [34] On the nonlinear (k, ψ)-Hilfer fractional differential equations
    Kucche, Kishor D.
    Mali, Ashwini D.
    CHAOS SOLITONS & FRACTALS, 2021, 152
  • [35] On the nonlinear Ψ-Hilfer hybrid fractional differential equations
    Kucche, Kishor D.
    Mali, Ashwini D.
    COMPUTATIONAL & APPLIED MATHEMATICS, 2022, 41 (03):
  • [36] Qualitative Analysis of Coupled Fractional Differential Equations involving Hilfer Derivative
    Dhawan, Kanika
    Vats, Ramesh Kumar
    Agarwal, Ravi P.
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2022, 30 (01): : 191 - 217
  • [37] Analysis and Optimal Control of φ-Hilfer Fractional Semilinear Equations Involving Nonlocal Impulsive Conditions
    Guechi, Sarra
    Dhayal, Rajesh
    Debbouche, Amar
    Malik, Muslim
    SYMMETRY-BASEL, 2021, 13 (11):
  • [38] Nonlocal Impulsive Fractional Integral Boundary Value Problem for (ρk,φk)-Hilfer Fractional Integro-Differential Equations
    Kaewsuwan, Marisa
    Phuwapathanapun, Rachanee
    Sudsutad, Weerawat
    Alzabut, Jehad
    Thaiprayoon, Chatthai
    Kongson, Jutarat
    MATHEMATICS, 2022, 10 (20)
  • [39] Existence of mild solutions for impulsive neutral Hilfer fractional evolution equations
    Pallavi Bedi
    Anoop Kumar
    Thabet Abdeljawad
    Aziz Khan
    Advances in Difference Equations, 2020
  • [40] On the controllability of Hilfer-Katugampola fractional differential equations
    Abbas, Mohamed, I
    ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA, 2020, 24 (02): : 195 - 204