THE INITIAL-BOUNDARY VALUE FOR THE COMBINED SCHRODINGER AND GERDJIKOV-IVANOV EQUATION ON THE HALF-LINE VIA THE RIEMANN-HILBERT APPROACH

被引:4
|
作者
Li, Yan [1 ,2 ]
Zhang, Ling [2 ]
Hu, Beibei [2 ]
Wang, Ruiqi [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai, Peoples R China
[2] Chuzhou Univ, Sch Math & Finance, Chuzhou, Anhui, Peoples R China
基金
中国国家自然科学基金;
关键词
Riemann-Hilbert problem; combined nonlinear Schrodinger and Gerdjikov-Ivanov equation; initial-boundary value problem; unified transform method; N-SOLITON;
D O I
10.1134/S0040577921110040
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
The Fokas method is used to study the initial-boundary value problem for the combined Schrodinger and Gerdjikov-Ivanov equation on the half-line. Assuming that the solution u(x, t) exists, it can be represented by the unique solution of a matrix Riemann-Hilbert problem formulated on the plane of the complex spectral parameter.. The jump matrices are given on the basis of the spectral functions, which are not independent, but are related by a global relation.
引用
收藏
页码:1537 / 1551
页数:15
相关论文
共 50 条